Cargando…
Intelligent Monitoring System Based on Noise-Assisted Multivariate Empirical Mode Decomposition Feature Extraction and Neural Networks
Because of the nonlinearity and nonstationarity in the vibration signals of some rotating machinery, the analysis of these signals using conventional time- or frequency-domain methods has some drawbacks, and the results can be misleading. In this paper, a couple of features derived from multivariate...
Autores principales: | Zhao, Le Fa, Siahpour, Shahin, Haeri Yazdi, Mohammad Reza, Ayati, Moosa, Zhao, Tian Yu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9061033/ https://www.ncbi.nlm.nih.gov/pubmed/35510053 http://dx.doi.org/10.1155/2022/2698498 |
Ejemplares similares
-
Noise-assisted multivariate empirical mode decomposition for multichannel EMG signals
por: Zhang, Yi, et al.
Publicado: (2017) -
Multiclass classification of imagined speech EEG using noise-assisted multivariate empirical mode decomposition and multireceptive field convolutional neural network
por: Park, Hyeong-jun, et al.
Publicado: (2023) -
Matlab Open Source Code: Noise-Assisted Multivariate Empirical Mode Decomposition Based Causal Decomposition for Causality Inference of Bivariate Time Series
por: Zhang, Yi, et al.
Publicado: (2022) -
Low-Density EEG for Neural Activity Reconstruction Using Multivariate Empirical Mode Decomposition
por: Soler, Andres, et al.
Publicado: (2020) -
Arrhythmia ECG Noise Reduction by Ensemble Empirical Mode Decomposition
por: Chang, Kang-Ming
Publicado: (2010)