Cargando…
An Attribute Extraction for Automated Malware Attack Classification and Detection Using Soft Computing Techniques
Malware has grown in popularity as a method of conducting cyber assaults in former decades as a result of numerous new deception methods employed by malware. To preserve networks, information, and intelligence, malware must be detected as soon as feasible. This article compares various attribute ext...
Autores principales: | Albishry, Nabeel, AlGhamdi, Rayed, Almalawi, Abdulmohsen, Khan, Asif Irshad, Kshirsagar, Pravin R., BaruDebtera |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9061036/ https://www.ncbi.nlm.nih.gov/pubmed/35510059 http://dx.doi.org/10.1155/2022/5061059 |
Ejemplares similares
-
Malware data science: attack detection and attribution
por: Saxe, Joshua, et al.
Publicado: (2018) -
Deep Learning Approaches for Prognosis of Automated Skin Disease
por: Kshirsagar, Pravin R., et al.
Publicado: (2022) -
Mobile malware attacks and defense
por: Dunham, Ken, et al.
Publicado: (2009) -
Computational Approach for Detection of Diabetes from Ocular Scans
por: Khan, Asif Irshad, et al.
Publicado: (2022) -
Studying Dynamical Characteristics of Oxygen Saturation Variability Signals Using Haar Wavelet
por: Alassafi, Madini O., et al.
Publicado: (2023)