Cargando…
Electronic and optical properties of perovskite compounds MA(1−α)FA(α)PbI(3−β)X(β) (X = Cl, Br) explored for photovoltaic applications
As outstanding light harvesters, solution-processable organic–inorganic hybrid perovskites (OIHPs) have been drawing considerable attention thanks to their higher power conversion efficiency (PCE) and cost-effective synthesis relative to other photovoltaic materials. Nevertheless, their further deve...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9061116/ https://www.ncbi.nlm.nih.gov/pubmed/35518467 http://dx.doi.org/10.1039/c8ra08189a |
_version_ | 1784698658405482496 |
---|---|
author | Chang, Junli Chen, Hong Wang, Guangzhao Wang, Biao Chen, Xiaorui Yuan, Hongkuan |
author_facet | Chang, Junli Chen, Hong Wang, Guangzhao Wang, Biao Chen, Xiaorui Yuan, Hongkuan |
author_sort | Chang, Junli |
collection | PubMed |
description | As outstanding light harvesters, solution-processable organic–inorganic hybrid perovskites (OIHPs) have been drawing considerable attention thanks to their higher power conversion efficiency (PCE) and cost-effective synthesis relative to other photovoltaic materials. Nevertheless, their further development is severely hindered by the drawbacks of poor stability and rapid degradation in particular. First-principles calculations based on density functional theory (DFT) are hence performed towards the perovskite compounds MA(1−α)FA(α)PbI(3−β)X(β) (X = Cl, Br), with the aim of exploring more efficient and stable OIHPs. In addition to that, a hybrid density functional is adopted for exact electronic properties, and their band structures indicate that the doped series are all direct band-gap semiconductors. Moreover, the defect formation energies indicate that the stability of perovskite compounds can be significantly enhanced via ion doping. Meanwhile, it is unveiled that the optical performance of the doped perovskite series is also effectively improved through ion doping. Therefore, the investigated perovskite compounds MA(1−α)FA(α)PbI(3−β)X(β) (X = Cl, Br) are promising candidates for enhancing solar-energy conversion efficiency. Our results pave a way in deeper understanding of the inherent characteristics of OIHPs, which is useful for designing new-type perovskite-based photovoltaic devices. |
format | Online Article Text |
id | pubmed-9061116 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-90611162022-05-04 Electronic and optical properties of perovskite compounds MA(1−α)FA(α)PbI(3−β)X(β) (X = Cl, Br) explored for photovoltaic applications Chang, Junli Chen, Hong Wang, Guangzhao Wang, Biao Chen, Xiaorui Yuan, Hongkuan RSC Adv Chemistry As outstanding light harvesters, solution-processable organic–inorganic hybrid perovskites (OIHPs) have been drawing considerable attention thanks to their higher power conversion efficiency (PCE) and cost-effective synthesis relative to other photovoltaic materials. Nevertheless, their further development is severely hindered by the drawbacks of poor stability and rapid degradation in particular. First-principles calculations based on density functional theory (DFT) are hence performed towards the perovskite compounds MA(1−α)FA(α)PbI(3−β)X(β) (X = Cl, Br), with the aim of exploring more efficient and stable OIHPs. In addition to that, a hybrid density functional is adopted for exact electronic properties, and their band structures indicate that the doped series are all direct band-gap semiconductors. Moreover, the defect formation energies indicate that the stability of perovskite compounds can be significantly enhanced via ion doping. Meanwhile, it is unveiled that the optical performance of the doped perovskite series is also effectively improved through ion doping. Therefore, the investigated perovskite compounds MA(1−α)FA(α)PbI(3−β)X(β) (X = Cl, Br) are promising candidates for enhancing solar-energy conversion efficiency. Our results pave a way in deeper understanding of the inherent characteristics of OIHPs, which is useful for designing new-type perovskite-based photovoltaic devices. The Royal Society of Chemistry 2019-03-01 /pmc/articles/PMC9061116/ /pubmed/35518467 http://dx.doi.org/10.1039/c8ra08189a Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry Chang, Junli Chen, Hong Wang, Guangzhao Wang, Biao Chen, Xiaorui Yuan, Hongkuan Electronic and optical properties of perovskite compounds MA(1−α)FA(α)PbI(3−β)X(β) (X = Cl, Br) explored for photovoltaic applications |
title | Electronic and optical properties of perovskite compounds MA(1−α)FA(α)PbI(3−β)X(β) (X = Cl, Br) explored for photovoltaic applications |
title_full | Electronic and optical properties of perovskite compounds MA(1−α)FA(α)PbI(3−β)X(β) (X = Cl, Br) explored for photovoltaic applications |
title_fullStr | Electronic and optical properties of perovskite compounds MA(1−α)FA(α)PbI(3−β)X(β) (X = Cl, Br) explored for photovoltaic applications |
title_full_unstemmed | Electronic and optical properties of perovskite compounds MA(1−α)FA(α)PbI(3−β)X(β) (X = Cl, Br) explored for photovoltaic applications |
title_short | Electronic and optical properties of perovskite compounds MA(1−α)FA(α)PbI(3−β)X(β) (X = Cl, Br) explored for photovoltaic applications |
title_sort | electronic and optical properties of perovskite compounds ma(1−α)fa(α)pbi(3−β)x(β) (x = cl, br) explored for photovoltaic applications |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9061116/ https://www.ncbi.nlm.nih.gov/pubmed/35518467 http://dx.doi.org/10.1039/c8ra08189a |
work_keys_str_mv | AT changjunli electronicandopticalpropertiesofperovskitecompoundsma1afaapbi3bxbxclbrexploredforphotovoltaicapplications AT chenhong electronicandopticalpropertiesofperovskitecompoundsma1afaapbi3bxbxclbrexploredforphotovoltaicapplications AT wangguangzhao electronicandopticalpropertiesofperovskitecompoundsma1afaapbi3bxbxclbrexploredforphotovoltaicapplications AT wangbiao electronicandopticalpropertiesofperovskitecompoundsma1afaapbi3bxbxclbrexploredforphotovoltaicapplications AT chenxiaorui electronicandopticalpropertiesofperovskitecompoundsma1afaapbi3bxbxclbrexploredforphotovoltaicapplications AT yuanhongkuan electronicandopticalpropertiesofperovskitecompoundsma1afaapbi3bxbxclbrexploredforphotovoltaicapplications |