Cargando…
Comparative lead adsorptions in synthetic wastewater by synthesized zeolite A of recycled industrial wastes from sugar factory and power plant
Increasing of industrializations causes of waste management problems, so use of industrial wastes for other purposes is an alternative option not only reducing industrial wastes but also providing benefit applications. Water contaminated by heavy metals is concerned because of their toxicity, so the...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9061264/ https://www.ncbi.nlm.nih.gov/pubmed/35520609 http://dx.doi.org/10.1016/j.heliyon.2022.e09323 |
Sumario: | Increasing of industrializations causes of waste management problems, so use of industrial wastes for other purposes is an alternative option not only reducing industrial wastes but also providing benefit applications. Water contaminated by heavy metals is concerned because of their toxicity, so the water treatment is required. Sugar factory and power plant create big loads of wastes which are bagasse fly ash (BFA) and coal fly ash (CFA). Since BFA and CFA have good chemical properties, they are possible to apply as raw materials for synthesis of zeolite–type adsorbents. Thus, use of these industrial wastes for heavy metal adsorptions is a good idea to accomplish for the waste management and water quality. This study presented the modified method of zeolite A synthesis by BFA and CFA for lead removals, characteristic identifications of synthesized zeolite A adsorbents, their lead adsorption efficiencies, and their adsorption isotherm and kinetics were investigated. ZBG and ZCF were synthesized, and all analytic characterizations were determined that ZBG and ZCF corresponded to zeolite A standard (STD). ZBG and ZCF were demonstrated lead removal efficiencies of 100%. The highest negatively charged of ZBG and ZCF were found at pH of 5 matched to the highest lead removal efficiencies of both zeolite A adsorbents. Adsorption isotherms and kinetics of ZBG and ZCF were corresponded to Langmuir isotherm and pseudo-second-order kinetic model. Therefore, ZBG and ZCF are potential adsorbents for environmental applications along with reducing of industrial wastes. |
---|