Cargando…

RAS activation induces synthetic lethality of MEK inhibition with mitochondrial oxidative metabolism in acute myeloid leukemia

Despite recent advances in acute myeloid leukemia (AML) molecular characterization and targeted therapies, a majority of AML cases still lack therapeutically actionable targets. In 127 AML cases with unmet therapeutic needs, as defined by the exclusion of ELN favorable cases and of FLT3-ITD mutation...

Descripción completa

Detalles Bibliográficos
Autores principales: Decroocq, Justine, Birsen, Rudy, Montersino, Camille, Chaskar, Prasad, Mano, Jordi, Poulain, Laury, Friedrich, Chloe, Alary, Anne-Sophie, Guermouche, Helene, Sahal, Ambrine, Fouquet, Guillemette, Gotanègre, Mathilde, Simonetta, Federico, Mouche, Sarah, Gestraud, Pierre, Lescure, Auriane, Del Nery, Elaine, Bosc, Claudie, Grenier, Adrien, Mazed, Fetta, Mondesir, Johanna, Chapuis, Nicolas, Ho, Liza, Boughalem, Aicha, Lelorc’h, Marc, Gobeaux, Camille, Fontenay, Michaela, Recher, Christian, Vey, Norbert, Guillé, Arnaud, Birnbaum, Daniel, Hermine, Olivier, Radford-Weiss, Isabelle, Tsantoulis, Petros, Collette, Yves, Castellano, Rémy, Sarry, Jean-Emmanuel, Pasmant, Eric, Bouscary, Didier, Kosmider, Olivier, Tamburini, Jerome
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9061298/
https://www.ncbi.nlm.nih.gov/pubmed/35354920
http://dx.doi.org/10.1038/s41375-022-01541-0
_version_ 1784698700481691648
author Decroocq, Justine
Birsen, Rudy
Montersino, Camille
Chaskar, Prasad
Mano, Jordi
Poulain, Laury
Friedrich, Chloe
Alary, Anne-Sophie
Guermouche, Helene
Sahal, Ambrine
Fouquet, Guillemette
Gotanègre, Mathilde
Simonetta, Federico
Mouche, Sarah
Gestraud, Pierre
Lescure, Auriane
Del Nery, Elaine
Bosc, Claudie
Grenier, Adrien
Mazed, Fetta
Mondesir, Johanna
Chapuis, Nicolas
Ho, Liza
Boughalem, Aicha
Lelorc’h, Marc
Gobeaux, Camille
Fontenay, Michaela
Recher, Christian
Vey, Norbert
Guillé, Arnaud
Birnbaum, Daniel
Hermine, Olivier
Radford-Weiss, Isabelle
Tsantoulis, Petros
Collette, Yves
Castellano, Rémy
Sarry, Jean-Emmanuel
Pasmant, Eric
Bouscary, Didier
Kosmider, Olivier
Tamburini, Jerome
author_facet Decroocq, Justine
Birsen, Rudy
Montersino, Camille
Chaskar, Prasad
Mano, Jordi
Poulain, Laury
Friedrich, Chloe
Alary, Anne-Sophie
Guermouche, Helene
Sahal, Ambrine
Fouquet, Guillemette
Gotanègre, Mathilde
Simonetta, Federico
Mouche, Sarah
Gestraud, Pierre
Lescure, Auriane
Del Nery, Elaine
Bosc, Claudie
Grenier, Adrien
Mazed, Fetta
Mondesir, Johanna
Chapuis, Nicolas
Ho, Liza
Boughalem, Aicha
Lelorc’h, Marc
Gobeaux, Camille
Fontenay, Michaela
Recher, Christian
Vey, Norbert
Guillé, Arnaud
Birnbaum, Daniel
Hermine, Olivier
Radford-Weiss, Isabelle
Tsantoulis, Petros
Collette, Yves
Castellano, Rémy
Sarry, Jean-Emmanuel
Pasmant, Eric
Bouscary, Didier
Kosmider, Olivier
Tamburini, Jerome
author_sort Decroocq, Justine
collection PubMed
description Despite recent advances in acute myeloid leukemia (AML) molecular characterization and targeted therapies, a majority of AML cases still lack therapeutically actionable targets. In 127 AML cases with unmet therapeutic needs, as defined by the exclusion of ELN favorable cases and of FLT3-ITD mutations, we identified 51 (40%) cases with alterations in RAS pathway genes (RAS+, mostly NF1, NRAS, KRAS, and PTPN11 genes). In 79 homogeneously treated AML patients from this cohort, RAS+ status were associated with higher white blood cell count, higher LDH, and reduced survival. In AML models of oncogenic addiction to RAS-MEK signaling, the MEK inhibitor trametinib demonstrated antileukemic activity in vitro and in vivo. However, the efficacy of trametinib was heterogeneous in ex vivo cultures of primary RAS+ AML patient specimens. From repurposing drug screens in RAS-activated AML cells, we identified pyrvinium pamoate, an anti-helminthic agent efficiently inhibiting the growth of RAS+ primary AML cells ex vivo, preferentially in trametinib-resistant PTPN11- or KRAS-mutated samples. Metabolic and genetic complementarity between trametinib and pyrvinium pamoate translated into anti-AML synergy in vitro. Moreover, this combination inhibited the propagation of RA+ AML cells in vivo in mice, indicating a potential for future clinical development of this strategy in AML.
format Online
Article
Text
id pubmed-9061298
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-90612982022-05-04 RAS activation induces synthetic lethality of MEK inhibition with mitochondrial oxidative metabolism in acute myeloid leukemia Decroocq, Justine Birsen, Rudy Montersino, Camille Chaskar, Prasad Mano, Jordi Poulain, Laury Friedrich, Chloe Alary, Anne-Sophie Guermouche, Helene Sahal, Ambrine Fouquet, Guillemette Gotanègre, Mathilde Simonetta, Federico Mouche, Sarah Gestraud, Pierre Lescure, Auriane Del Nery, Elaine Bosc, Claudie Grenier, Adrien Mazed, Fetta Mondesir, Johanna Chapuis, Nicolas Ho, Liza Boughalem, Aicha Lelorc’h, Marc Gobeaux, Camille Fontenay, Michaela Recher, Christian Vey, Norbert Guillé, Arnaud Birnbaum, Daniel Hermine, Olivier Radford-Weiss, Isabelle Tsantoulis, Petros Collette, Yves Castellano, Rémy Sarry, Jean-Emmanuel Pasmant, Eric Bouscary, Didier Kosmider, Olivier Tamburini, Jerome Leukemia Article Despite recent advances in acute myeloid leukemia (AML) molecular characterization and targeted therapies, a majority of AML cases still lack therapeutically actionable targets. In 127 AML cases with unmet therapeutic needs, as defined by the exclusion of ELN favorable cases and of FLT3-ITD mutations, we identified 51 (40%) cases with alterations in RAS pathway genes (RAS+, mostly NF1, NRAS, KRAS, and PTPN11 genes). In 79 homogeneously treated AML patients from this cohort, RAS+ status were associated with higher white blood cell count, higher LDH, and reduced survival. In AML models of oncogenic addiction to RAS-MEK signaling, the MEK inhibitor trametinib demonstrated antileukemic activity in vitro and in vivo. However, the efficacy of trametinib was heterogeneous in ex vivo cultures of primary RAS+ AML patient specimens. From repurposing drug screens in RAS-activated AML cells, we identified pyrvinium pamoate, an anti-helminthic agent efficiently inhibiting the growth of RAS+ primary AML cells ex vivo, preferentially in trametinib-resistant PTPN11- or KRAS-mutated samples. Metabolic and genetic complementarity between trametinib and pyrvinium pamoate translated into anti-AML synergy in vitro. Moreover, this combination inhibited the propagation of RA+ AML cells in vivo in mice, indicating a potential for future clinical development of this strategy in AML. Nature Publishing Group UK 2022-03-30 2022 /pmc/articles/PMC9061298/ /pubmed/35354920 http://dx.doi.org/10.1038/s41375-022-01541-0 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Decroocq, Justine
Birsen, Rudy
Montersino, Camille
Chaskar, Prasad
Mano, Jordi
Poulain, Laury
Friedrich, Chloe
Alary, Anne-Sophie
Guermouche, Helene
Sahal, Ambrine
Fouquet, Guillemette
Gotanègre, Mathilde
Simonetta, Federico
Mouche, Sarah
Gestraud, Pierre
Lescure, Auriane
Del Nery, Elaine
Bosc, Claudie
Grenier, Adrien
Mazed, Fetta
Mondesir, Johanna
Chapuis, Nicolas
Ho, Liza
Boughalem, Aicha
Lelorc’h, Marc
Gobeaux, Camille
Fontenay, Michaela
Recher, Christian
Vey, Norbert
Guillé, Arnaud
Birnbaum, Daniel
Hermine, Olivier
Radford-Weiss, Isabelle
Tsantoulis, Petros
Collette, Yves
Castellano, Rémy
Sarry, Jean-Emmanuel
Pasmant, Eric
Bouscary, Didier
Kosmider, Olivier
Tamburini, Jerome
RAS activation induces synthetic lethality of MEK inhibition with mitochondrial oxidative metabolism in acute myeloid leukemia
title RAS activation induces synthetic lethality of MEK inhibition with mitochondrial oxidative metabolism in acute myeloid leukemia
title_full RAS activation induces synthetic lethality of MEK inhibition with mitochondrial oxidative metabolism in acute myeloid leukemia
title_fullStr RAS activation induces synthetic lethality of MEK inhibition with mitochondrial oxidative metabolism in acute myeloid leukemia
title_full_unstemmed RAS activation induces synthetic lethality of MEK inhibition with mitochondrial oxidative metabolism in acute myeloid leukemia
title_short RAS activation induces synthetic lethality of MEK inhibition with mitochondrial oxidative metabolism in acute myeloid leukemia
title_sort ras activation induces synthetic lethality of mek inhibition with mitochondrial oxidative metabolism in acute myeloid leukemia
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9061298/
https://www.ncbi.nlm.nih.gov/pubmed/35354920
http://dx.doi.org/10.1038/s41375-022-01541-0
work_keys_str_mv AT decroocqjustine rasactivationinducessyntheticlethalityofmekinhibitionwithmitochondrialoxidativemetabolisminacutemyeloidleukemia
AT birsenrudy rasactivationinducessyntheticlethalityofmekinhibitionwithmitochondrialoxidativemetabolisminacutemyeloidleukemia
AT montersinocamille rasactivationinducessyntheticlethalityofmekinhibitionwithmitochondrialoxidativemetabolisminacutemyeloidleukemia
AT chaskarprasad rasactivationinducessyntheticlethalityofmekinhibitionwithmitochondrialoxidativemetabolisminacutemyeloidleukemia
AT manojordi rasactivationinducessyntheticlethalityofmekinhibitionwithmitochondrialoxidativemetabolisminacutemyeloidleukemia
AT poulainlaury rasactivationinducessyntheticlethalityofmekinhibitionwithmitochondrialoxidativemetabolisminacutemyeloidleukemia
AT friedrichchloe rasactivationinducessyntheticlethalityofmekinhibitionwithmitochondrialoxidativemetabolisminacutemyeloidleukemia
AT alaryannesophie rasactivationinducessyntheticlethalityofmekinhibitionwithmitochondrialoxidativemetabolisminacutemyeloidleukemia
AT guermouchehelene rasactivationinducessyntheticlethalityofmekinhibitionwithmitochondrialoxidativemetabolisminacutemyeloidleukemia
AT sahalambrine rasactivationinducessyntheticlethalityofmekinhibitionwithmitochondrialoxidativemetabolisminacutemyeloidleukemia
AT fouquetguillemette rasactivationinducessyntheticlethalityofmekinhibitionwithmitochondrialoxidativemetabolisminacutemyeloidleukemia
AT gotanegremathilde rasactivationinducessyntheticlethalityofmekinhibitionwithmitochondrialoxidativemetabolisminacutemyeloidleukemia
AT simonettafederico rasactivationinducessyntheticlethalityofmekinhibitionwithmitochondrialoxidativemetabolisminacutemyeloidleukemia
AT mouchesarah rasactivationinducessyntheticlethalityofmekinhibitionwithmitochondrialoxidativemetabolisminacutemyeloidleukemia
AT gestraudpierre rasactivationinducessyntheticlethalityofmekinhibitionwithmitochondrialoxidativemetabolisminacutemyeloidleukemia
AT lescureauriane rasactivationinducessyntheticlethalityofmekinhibitionwithmitochondrialoxidativemetabolisminacutemyeloidleukemia
AT delneryelaine rasactivationinducessyntheticlethalityofmekinhibitionwithmitochondrialoxidativemetabolisminacutemyeloidleukemia
AT boscclaudie rasactivationinducessyntheticlethalityofmekinhibitionwithmitochondrialoxidativemetabolisminacutemyeloidleukemia
AT grenieradrien rasactivationinducessyntheticlethalityofmekinhibitionwithmitochondrialoxidativemetabolisminacutemyeloidleukemia
AT mazedfetta rasactivationinducessyntheticlethalityofmekinhibitionwithmitochondrialoxidativemetabolisminacutemyeloidleukemia
AT mondesirjohanna rasactivationinducessyntheticlethalityofmekinhibitionwithmitochondrialoxidativemetabolisminacutemyeloidleukemia
AT chapuisnicolas rasactivationinducessyntheticlethalityofmekinhibitionwithmitochondrialoxidativemetabolisminacutemyeloidleukemia
AT holiza rasactivationinducessyntheticlethalityofmekinhibitionwithmitochondrialoxidativemetabolisminacutemyeloidleukemia
AT boughalemaicha rasactivationinducessyntheticlethalityofmekinhibitionwithmitochondrialoxidativemetabolisminacutemyeloidleukemia
AT lelorchmarc rasactivationinducessyntheticlethalityofmekinhibitionwithmitochondrialoxidativemetabolisminacutemyeloidleukemia
AT gobeauxcamille rasactivationinducessyntheticlethalityofmekinhibitionwithmitochondrialoxidativemetabolisminacutemyeloidleukemia
AT fontenaymichaela rasactivationinducessyntheticlethalityofmekinhibitionwithmitochondrialoxidativemetabolisminacutemyeloidleukemia
AT recherchristian rasactivationinducessyntheticlethalityofmekinhibitionwithmitochondrialoxidativemetabolisminacutemyeloidleukemia
AT veynorbert rasactivationinducessyntheticlethalityofmekinhibitionwithmitochondrialoxidativemetabolisminacutemyeloidleukemia
AT guillearnaud rasactivationinducessyntheticlethalityofmekinhibitionwithmitochondrialoxidativemetabolisminacutemyeloidleukemia
AT birnbaumdaniel rasactivationinducessyntheticlethalityofmekinhibitionwithmitochondrialoxidativemetabolisminacutemyeloidleukemia
AT hermineolivier rasactivationinducessyntheticlethalityofmekinhibitionwithmitochondrialoxidativemetabolisminacutemyeloidleukemia
AT radfordweissisabelle rasactivationinducessyntheticlethalityofmekinhibitionwithmitochondrialoxidativemetabolisminacutemyeloidleukemia
AT tsantoulispetros rasactivationinducessyntheticlethalityofmekinhibitionwithmitochondrialoxidativemetabolisminacutemyeloidleukemia
AT colletteyves rasactivationinducessyntheticlethalityofmekinhibitionwithmitochondrialoxidativemetabolisminacutemyeloidleukemia
AT castellanoremy rasactivationinducessyntheticlethalityofmekinhibitionwithmitochondrialoxidativemetabolisminacutemyeloidleukemia
AT sarryjeanemmanuel rasactivationinducessyntheticlethalityofmekinhibitionwithmitochondrialoxidativemetabolisminacutemyeloidleukemia
AT pasmanteric rasactivationinducessyntheticlethalityofmekinhibitionwithmitochondrialoxidativemetabolisminacutemyeloidleukemia
AT bouscarydidier rasactivationinducessyntheticlethalityofmekinhibitionwithmitochondrialoxidativemetabolisminacutemyeloidleukemia
AT kosmiderolivier rasactivationinducessyntheticlethalityofmekinhibitionwithmitochondrialoxidativemetabolisminacutemyeloidleukemia
AT tamburinijerome rasactivationinducessyntheticlethalityofmekinhibitionwithmitochondrialoxidativemetabolisminacutemyeloidleukemia