Cargando…
Two-dimensional additive diethylammonium iodide promoting crystal growth for efficient and stable perovskite solar cells
Methylammonium lead iodide perovskite photovoltaics have attracted remarkable attention due to their exceptional power conversion efficiencies (PCEs). The film morphology of organometallic halide perovskite plays a very important role in the performance of planar perovskite solar cells (PVSCs). Prev...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9061469/ https://www.ncbi.nlm.nih.gov/pubmed/35521197 http://dx.doi.org/10.1039/c9ra01186b |
_version_ | 1784698734967259136 |
---|---|
author | Huang, Xin Cui, Qiuhong Bi, Wentao Li, Ling Jia, Pengcheng Hou, Yanbing Hu, Yufeng Lou, Zhidong Teng, Feng |
author_facet | Huang, Xin Cui, Qiuhong Bi, Wentao Li, Ling Jia, Pengcheng Hou, Yanbing Hu, Yufeng Lou, Zhidong Teng, Feng |
author_sort | Huang, Xin |
collection | PubMed |
description | Methylammonium lead iodide perovskite photovoltaics have attracted remarkable attention due to their exceptional power conversion efficiencies (PCEs). The film morphology of organometallic halide perovskite plays a very important role in the performance of planar perovskite solar cells (PVSCs). Previous methods have been explored to control the crystal growth for getting a compact and smooth perovskite film. Here, we report an effective and reproducible approach for enhancing the stability and the efficiency of PVSCs by incorporating a small quantity of two-dimensional (2D) material diethylammonium iodide (DAI) in three-dimensional (3D) MAPbI(3), which can facilitate the perovskite crystallization processes and improve the resulting film crystal quality. The fabricated (DA(2)PbI(4))(0.05)MAPbI(3) perovskite hybrid films exhibit good morphology with larger grains and uniform morphology. Simultaneously, reduced defects and enhanced carrier lifetime within a full device indicate enhanced crystallization effects as a result of the DAI inclusion. The photovoltaic device attains a high photocurrent of 22.95 mA cm(−2) and a high fill factor of 79.04%, resulting in an overall PCE of 19.05%. Moreover, the stability of the 10% DAI doped perovskite solar cell is also improved. These results offer a promising stable and efficient light-absorbing material for solid-state photovoltaics and other applications. |
format | Online Article Text |
id | pubmed-9061469 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-90614692022-05-04 Two-dimensional additive diethylammonium iodide promoting crystal growth for efficient and stable perovskite solar cells Huang, Xin Cui, Qiuhong Bi, Wentao Li, Ling Jia, Pengcheng Hou, Yanbing Hu, Yufeng Lou, Zhidong Teng, Feng RSC Adv Chemistry Methylammonium lead iodide perovskite photovoltaics have attracted remarkable attention due to their exceptional power conversion efficiencies (PCEs). The film morphology of organometallic halide perovskite plays a very important role in the performance of planar perovskite solar cells (PVSCs). Previous methods have been explored to control the crystal growth for getting a compact and smooth perovskite film. Here, we report an effective and reproducible approach for enhancing the stability and the efficiency of PVSCs by incorporating a small quantity of two-dimensional (2D) material diethylammonium iodide (DAI) in three-dimensional (3D) MAPbI(3), which can facilitate the perovskite crystallization processes and improve the resulting film crystal quality. The fabricated (DA(2)PbI(4))(0.05)MAPbI(3) perovskite hybrid films exhibit good morphology with larger grains and uniform morphology. Simultaneously, reduced defects and enhanced carrier lifetime within a full device indicate enhanced crystallization effects as a result of the DAI inclusion. The photovoltaic device attains a high photocurrent of 22.95 mA cm(−2) and a high fill factor of 79.04%, resulting in an overall PCE of 19.05%. Moreover, the stability of the 10% DAI doped perovskite solar cell is also improved. These results offer a promising stable and efficient light-absorbing material for solid-state photovoltaics and other applications. The Royal Society of Chemistry 2019-03-11 /pmc/articles/PMC9061469/ /pubmed/35521197 http://dx.doi.org/10.1039/c9ra01186b Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Huang, Xin Cui, Qiuhong Bi, Wentao Li, Ling Jia, Pengcheng Hou, Yanbing Hu, Yufeng Lou, Zhidong Teng, Feng Two-dimensional additive diethylammonium iodide promoting crystal growth for efficient and stable perovskite solar cells |
title | Two-dimensional additive diethylammonium iodide promoting crystal growth for efficient and stable perovskite solar cells |
title_full | Two-dimensional additive diethylammonium iodide promoting crystal growth for efficient and stable perovskite solar cells |
title_fullStr | Two-dimensional additive diethylammonium iodide promoting crystal growth for efficient and stable perovskite solar cells |
title_full_unstemmed | Two-dimensional additive diethylammonium iodide promoting crystal growth for efficient and stable perovskite solar cells |
title_short | Two-dimensional additive diethylammonium iodide promoting crystal growth for efficient and stable perovskite solar cells |
title_sort | two-dimensional additive diethylammonium iodide promoting crystal growth for efficient and stable perovskite solar cells |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9061469/ https://www.ncbi.nlm.nih.gov/pubmed/35521197 http://dx.doi.org/10.1039/c9ra01186b |
work_keys_str_mv | AT huangxin twodimensionaladditivediethylammoniumiodidepromotingcrystalgrowthforefficientandstableperovskitesolarcells AT cuiqiuhong twodimensionaladditivediethylammoniumiodidepromotingcrystalgrowthforefficientandstableperovskitesolarcells AT biwentao twodimensionaladditivediethylammoniumiodidepromotingcrystalgrowthforefficientandstableperovskitesolarcells AT liling twodimensionaladditivediethylammoniumiodidepromotingcrystalgrowthforefficientandstableperovskitesolarcells AT jiapengcheng twodimensionaladditivediethylammoniumiodidepromotingcrystalgrowthforefficientandstableperovskitesolarcells AT houyanbing twodimensionaladditivediethylammoniumiodidepromotingcrystalgrowthforefficientandstableperovskitesolarcells AT huyufeng twodimensionaladditivediethylammoniumiodidepromotingcrystalgrowthforefficientandstableperovskitesolarcells AT louzhidong twodimensionaladditivediethylammoniumiodidepromotingcrystalgrowthforefficientandstableperovskitesolarcells AT tengfeng twodimensionaladditivediethylammoniumiodidepromotingcrystalgrowthforefficientandstableperovskitesolarcells |