Cargando…
Classification of retinoblastoma-1 gene mutation with machine learning-based models in bladder cancer
PURPOSE: This study aims to evaluate the potential of machine learning algorithms built with radiomics features from computed tomography urography (CTU) images that classify RB1 gene mutation status in bladder cancer. METHOD: The study enrolled CTU images of 18 patients with and 54 without RB1 mutat...
Autores principales: | İnce, Okan, Yıldız, Hülya, Kisbet, Tanju, Ertürk, Şükrü Mehmet, Önder, Hakan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9061624/ https://www.ncbi.nlm.nih.gov/pubmed/35520623 http://dx.doi.org/10.1016/j.heliyon.2022.e09311 |
Ejemplares similares
-
Prediction of carcinogenic human papillomavirus types in cervical cancer from multiparametric magnetic resonance images with machine learning-based radiomics models
por: İnce, Okan, et al.
Publicado: (2023) -
Retinoblastoma gene mutations in primary human bladder cancer.
por: Miyamoto, H., et al.
Publicado: (1995) -
RB1 gene mutations and genetic spectrum in retinoblastoma cases
por: Akdeniz Odemis, Demet, et al.
Publicado: (2023) -
Classification and staging of retinoblastoma
por: Fabian, Ido Didi, et al.
Publicado: (2018) -
Artificial intelligence and machine learning in ocular oncology: Retinoblastoma
por: Kaliki, Swathi, et al.
Publicado: (2023)