Cargando…

A cost-effective alkaline polysulfide-air redox flow battery enabled by a dual-membrane cell architecture

With the rapid development of renewable energy harvesting technologies, there is a significant demand for long-duration energy storage technologies that can be deployed at grid scale. In this regard, polysulfide-air redox flow batteries demonstrated great potential. However, the crossover of polysul...

Descripción completa

Detalles Bibliográficos
Autores principales: Xia, Yuhua, Ouyang, Mengzheng, Yufit, Vladimir, Tan, Rui, Regoutz, Anna, Wang, Anqi, Mao, Wenjie, Chakrabarti, Barun, Kavei, Ashkan, Song, Qilei, Kucernak, Anthony R., Brandon, Nigel P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9061742/
https://www.ncbi.nlm.nih.gov/pubmed/35501344
http://dx.doi.org/10.1038/s41467-022-30044-w
Descripción
Sumario:With the rapid development of renewable energy harvesting technologies, there is a significant demand for long-duration energy storage technologies that can be deployed at grid scale. In this regard, polysulfide-air redox flow batteries demonstrated great potential. However, the crossover of polysulfide is one significant challenge. Here, we report a stable and cost-effective alkaline-based hybrid polysulfide-air redox flow battery where a dual-membrane-structured flow cell design mitigates the sulfur crossover issue. Moreover, combining manganese/carbon catalysed air electrodes with sulfidised Ni foam polysulfide electrodes, the redox flow battery achieves a maximum power density of 5.8 mW cm(−2) at 50% state of charge and 55 °C. An average round-trip energy efficiency of 40% is also achieved over 80 cycles at 1 mA cm(−2). Based on the performance reported, techno-economic analyses suggested that energy and power costs of about 2.5 US$/kWh and 1600 US$/kW, respectively, has be achieved for this type of alkaline polysulfide-air redox flow battery, with significant scope for further reduction.