Cargando…

Mre11-Rad50 oligomerization promotes DNA double-strand break repair

The conserved Mre11-Rad50 complex is crucial for the detection, signaling, end tethering and processing of DNA double-strand breaks. While it is known that Mre11-Rad50 foci formation at DNA lesions accompanies repair, the underlying molecular assembly mechanisms and functional implications remained...

Descripción completa

Detalles Bibliográficos
Autores principales: Kissling, Vera M., Reginato, Giordano, Bianco, Eliana, Kasaciunaite, Kristina, Tilma, Janny, Cereghetti, Gea, Schindler, Natalie, Lee, Sung Sik, Guérois, Raphaël, Luke, Brian, Seidel, Ralf, Cejka, Petr, Peter, Matthias
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9061753/
https://www.ncbi.nlm.nih.gov/pubmed/35501303
http://dx.doi.org/10.1038/s41467-022-29841-0
_version_ 1784698791210778624
author Kissling, Vera M.
Reginato, Giordano
Bianco, Eliana
Kasaciunaite, Kristina
Tilma, Janny
Cereghetti, Gea
Schindler, Natalie
Lee, Sung Sik
Guérois, Raphaël
Luke, Brian
Seidel, Ralf
Cejka, Petr
Peter, Matthias
author_facet Kissling, Vera M.
Reginato, Giordano
Bianco, Eliana
Kasaciunaite, Kristina
Tilma, Janny
Cereghetti, Gea
Schindler, Natalie
Lee, Sung Sik
Guérois, Raphaël
Luke, Brian
Seidel, Ralf
Cejka, Petr
Peter, Matthias
author_sort Kissling, Vera M.
collection PubMed
description The conserved Mre11-Rad50 complex is crucial for the detection, signaling, end tethering and processing of DNA double-strand breaks. While it is known that Mre11-Rad50 foci formation at DNA lesions accompanies repair, the underlying molecular assembly mechanisms and functional implications remained unclear. Combining pathway reconstitution in electron microscopy, biochemical assays and genetic studies, we show that S. cerevisiae Mre11-Rad50 with or without Xrs2 forms higher-order assemblies in solution and on DNA. Rad50 mediates such oligomerization, and mutations in a conserved Rad50 beta-sheet enhance or disrupt oligomerization. We demonstrate that Mre11-Rad50-Xrs2 oligomerization facilitates foci formation, DNA damage signaling, repair, and telomere maintenance in vivo. Mre11-Rad50 oligomerization does not affect its exonuclease activity but drives endonucleolytic cleavage at multiple sites on the 5′-DNA strand near double-strand breaks. Interestingly, mutations in the human RAD50 beta-sheet are linked to hereditary cancer predisposition and our findings might provide insights into their potential role in chemoresistance.
format Online
Article
Text
id pubmed-9061753
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-90617532022-05-04 Mre11-Rad50 oligomerization promotes DNA double-strand break repair Kissling, Vera M. Reginato, Giordano Bianco, Eliana Kasaciunaite, Kristina Tilma, Janny Cereghetti, Gea Schindler, Natalie Lee, Sung Sik Guérois, Raphaël Luke, Brian Seidel, Ralf Cejka, Petr Peter, Matthias Nat Commun Article The conserved Mre11-Rad50 complex is crucial for the detection, signaling, end tethering and processing of DNA double-strand breaks. While it is known that Mre11-Rad50 foci formation at DNA lesions accompanies repair, the underlying molecular assembly mechanisms and functional implications remained unclear. Combining pathway reconstitution in electron microscopy, biochemical assays and genetic studies, we show that S. cerevisiae Mre11-Rad50 with or without Xrs2 forms higher-order assemblies in solution and on DNA. Rad50 mediates such oligomerization, and mutations in a conserved Rad50 beta-sheet enhance or disrupt oligomerization. We demonstrate that Mre11-Rad50-Xrs2 oligomerization facilitates foci formation, DNA damage signaling, repair, and telomere maintenance in vivo. Mre11-Rad50 oligomerization does not affect its exonuclease activity but drives endonucleolytic cleavage at multiple sites on the 5′-DNA strand near double-strand breaks. Interestingly, mutations in the human RAD50 beta-sheet are linked to hereditary cancer predisposition and our findings might provide insights into their potential role in chemoresistance. Nature Publishing Group UK 2022-05-02 /pmc/articles/PMC9061753/ /pubmed/35501303 http://dx.doi.org/10.1038/s41467-022-29841-0 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Kissling, Vera M.
Reginato, Giordano
Bianco, Eliana
Kasaciunaite, Kristina
Tilma, Janny
Cereghetti, Gea
Schindler, Natalie
Lee, Sung Sik
Guérois, Raphaël
Luke, Brian
Seidel, Ralf
Cejka, Petr
Peter, Matthias
Mre11-Rad50 oligomerization promotes DNA double-strand break repair
title Mre11-Rad50 oligomerization promotes DNA double-strand break repair
title_full Mre11-Rad50 oligomerization promotes DNA double-strand break repair
title_fullStr Mre11-Rad50 oligomerization promotes DNA double-strand break repair
title_full_unstemmed Mre11-Rad50 oligomerization promotes DNA double-strand break repair
title_short Mre11-Rad50 oligomerization promotes DNA double-strand break repair
title_sort mre11-rad50 oligomerization promotes dna double-strand break repair
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9061753/
https://www.ncbi.nlm.nih.gov/pubmed/35501303
http://dx.doi.org/10.1038/s41467-022-29841-0
work_keys_str_mv AT kisslingveram mre11rad50oligomerizationpromotesdnadoublestrandbreakrepair
AT reginatogiordano mre11rad50oligomerizationpromotesdnadoublestrandbreakrepair
AT biancoeliana mre11rad50oligomerizationpromotesdnadoublestrandbreakrepair
AT kasaciunaitekristina mre11rad50oligomerizationpromotesdnadoublestrandbreakrepair
AT tilmajanny mre11rad50oligomerizationpromotesdnadoublestrandbreakrepair
AT cereghettigea mre11rad50oligomerizationpromotesdnadoublestrandbreakrepair
AT schindlernatalie mre11rad50oligomerizationpromotesdnadoublestrandbreakrepair
AT leesungsik mre11rad50oligomerizationpromotesdnadoublestrandbreakrepair
AT gueroisraphael mre11rad50oligomerizationpromotesdnadoublestrandbreakrepair
AT lukebrian mre11rad50oligomerizationpromotesdnadoublestrandbreakrepair
AT seidelralf mre11rad50oligomerizationpromotesdnadoublestrandbreakrepair
AT cejkapetr mre11rad50oligomerizationpromotesdnadoublestrandbreakrepair
AT petermatthias mre11rad50oligomerizationpromotesdnadoublestrandbreakrepair