Cargando…
Low-dimensional physics of clay particle size distribution and layer ordering
Clays are known for their small particle sizes and complex layer stacking. We show here that the limited dimension of clay particles arises from the lack of long-range order in low-dimensional systems. Because of its weak interlayer interaction, a clay mineral can be treated as two separate low-dime...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9061774/ https://www.ncbi.nlm.nih.gov/pubmed/35501426 http://dx.doi.org/10.1038/s41598-022-11036-8 |
Sumario: | Clays are known for their small particle sizes and complex layer stacking. We show here that the limited dimension of clay particles arises from the lack of long-range order in low-dimensional systems. Because of its weak interlayer interaction, a clay mineral can be treated as two separate low-dimensional systems: a 2D system for individual phyllosilicate layers and a quasi-1D system for layer stacking. The layer stacking or ordering in an interstratified clay can be described by a 1D Ising model while the limited extension of individual phyllosilicate layers can be related to a 2D Berezinskii–Kosterlitz–Thouless transition. This treatment allows for a systematic prediction of clay particle size distributions and layer stacking as controlled by the physical and chemical conditions for mineral growth and transformation. Clay minerals provide a useful model system for studying a transition from a 1D to 3D system in crystal growth and for a nanoscale structural manipulation of a general type of layered materials. |
---|