Cargando…

MRI-based radiomics to predict response in locally advanced rectal cancer: comparison of manual and automatic segmentation on external validation in a multicentre study

BACKGROUND: Pathological complete response after neoadjuvant chemoradiotherapy in locally advanced rectal cancer (LARC) is achieved in 15–30% of cases. Our aim was to implement and externally validate a magnetic resonance imaging (MRI)-based radiomics pipeline to predict response to treatment and to...

Descripción completa

Detalles Bibliográficos
Autores principales: Defeudis, Arianna, Mazzetti, Simone, Panic, Jovana, Micilotta, Monica, Vassallo, Lorenzo, Giannetto, Giuliana, Gatti, Marco, Faletti, Riccardo, Cirillo, Stefano, Regge, Daniele, Giannini, Valentina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Vienna 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9061921/
https://www.ncbi.nlm.nih.gov/pubmed/35501512
http://dx.doi.org/10.1186/s41747-022-00272-2
Descripción
Sumario:BACKGROUND: Pathological complete response after neoadjuvant chemoradiotherapy in locally advanced rectal cancer (LARC) is achieved in 15–30% of cases. Our aim was to implement and externally validate a magnetic resonance imaging (MRI)-based radiomics pipeline to predict response to treatment and to investigate the impact of manual and automatic segmentations on the radiomics models. METHODS: Ninety-five patients with stage II/III LARC who underwent multiparametric MRI before chemoradiotherapy and surgical treatment were enrolled from three institutions. Patients were classified as responders if tumour regression grade was 1 or 2 and nonresponders otherwise. Sixty-seven patients composed the construction dataset, while 28 the external validation. Tumour volumes were manually and automatically segmented using a U-net algorithm. Three approaches for feature selection were tested and combined with four machine learning classifiers. RESULTS: Using manual segmentation, the best result reached an accuracy of 68% on the validation set, with sensitivity 60%, specificity 77%, negative predictive value (NPV) 63%, and positive predictive value (PPV) 75%. The automatic segmentation achieved an accuracy of 75% on the validation set, with sensitivity 80%, specificity 69%, and both NPV and PPV 75%. Sensitivity and NPV on the validation set were significantly higher (p = 0.047) for the automatic versus manual segmentation. CONCLUSION: Our study showed that radiomics models can pave the way to help clinicians in the prediction of tumour response to chemoradiotherapy of LARC and to personalise per-patient treatment. The results from the external validation dataset are promising for further research into radiomics approaches using both manual and automatic segmentations. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s41747-022-00272-2.