Cargando…
Potent α-amylase inhibitory activity of sprouted quinoa-based yoghurt beverages fermented with selected anti-diabetic strains of lactic acid bacteria
The in vitro inhibitory effect of sprouted quinoa yoghurt beverages (QYB) fermented with anti-diabetic lactic acid bacteria on α-amylase was investigated. In vitro studies using porcine pancreatic α-amylase showed that quinoa yoghurt beverages fermented with Lactobacillus casei Zhang and Lactobacill...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9062202/ https://www.ncbi.nlm.nih.gov/pubmed/35520715 http://dx.doi.org/10.1039/c8ra10063b |
Sumario: | The in vitro inhibitory effect of sprouted quinoa yoghurt beverages (QYB) fermented with anti-diabetic lactic acid bacteria on α-amylase was investigated. In vitro studies using porcine pancreatic α-amylase showed that quinoa yoghurt beverages fermented with Lactobacillus casei Zhang and Lactobacillus casei SY13 dose-dependently inhibited the activities of α-amylase. The saponin content, reducing and total sugars were also quantified to determine their potency as anti-hyperglycemic agents against type 2 diabetes mellitus. The saponin contents of the yoghurt beverages were relatively low at a range of 0.19–0.41%, and significantly reduced as germination time increased. Germination significantly decreased the reducing sugars in all samples. A total of 4 sugars were identified using HPLC. Quinoa yoghurt beverages can be targeted as a potential dual-inhibitory strategy to attenuate type 2 diabetes mellitus by their ability to inhibit α-amylase activity as well as reduce or prevent hyperglycemic conditions associated with elevated levels of sugar glucose in the blood. |
---|