Cargando…

RNA-Seq data of ALKBH5 and FTO double knockout HEK293T human cells

N6-methyladenosine (m6A) is the most abundant, highly dynamic mRNA modification that regulates mRNA splicing, stability, and translation. The m6A epigenetic mark is erased by RNA demethylases ALKBH5 (AlkB Homolog 5) and FTO (Fat mass and obesity-associated protein). The ALKBH5 and FTO RNA demethylas...

Descripción completa

Detalles Bibliográficos
Autores principales: Smolin, Egor A., Buyan, Andrey I., Lyabin, Dmitry N., Kulakovskiy, Ivan V., Eliseeva, Irina A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9062317/
https://www.ncbi.nlm.nih.gov/pubmed/35516002
http://dx.doi.org/10.1016/j.dib.2022.108187
Descripción
Sumario:N6-methyladenosine (m6A) is the most abundant, highly dynamic mRNA modification that regulates mRNA splicing, stability, and translation. The m6A epigenetic mark is erased by RNA demethylases ALKBH5 (AlkB Homolog 5) and FTO (Fat mass and obesity-associated protein). The ALKBH5 and FTO RNA demethylases recognize m6A in similar nucleotide contexts. Therefore, these proteins can partially substitute for each other. To assess the impact of total m6A demethylation failure we performed high-throughput sequencing of cytoplasmic RNA from ALKBH5 and FTO double knockout and wild type HEK293T cells. The RNA-Seq libraries were sequenced on Illumina NextSeq 500, trimmed, and mapped to the human genome. The consequent read counting and differential expression analysis in the R environment detected 5871 differentially expressed and 166 alternatively spliced genes comparing double knockout against wild type HEK293T cells. Raw data are deposited in NCBI Gene Expression Omnibus (GEO) repository under GEO accession GSE198050.