Cargando…

A network model of glymphatic flow under different experimentally-motivated parametric scenarios

Flow of cerebrospinal fluid (CSF) through perivascular spaces (PVSs) in the brain delivers nutrients, clears metabolic waste, and causes edema formation. Brain-wide imaging cannot resolve PVSs, and high-resolution methods cannot access deep tissue. However, theoretical models provide valuable insigh...

Descripción completa

Detalles Bibliográficos
Autores principales: Tithof, Jeffrey, Boster, Kimberly A.S., Bork, Peter A.R., Nedergaard, Maiken, Thomas, John H., Kelley, Douglas H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9062681/
https://www.ncbi.nlm.nih.gov/pubmed/35521514
http://dx.doi.org/10.1016/j.isci.2022.104258
_version_ 1784699000366039040
author Tithof, Jeffrey
Boster, Kimberly A.S.
Bork, Peter A.R.
Nedergaard, Maiken
Thomas, John H.
Kelley, Douglas H.
author_facet Tithof, Jeffrey
Boster, Kimberly A.S.
Bork, Peter A.R.
Nedergaard, Maiken
Thomas, John H.
Kelley, Douglas H.
author_sort Tithof, Jeffrey
collection PubMed
description Flow of cerebrospinal fluid (CSF) through perivascular spaces (PVSs) in the brain delivers nutrients, clears metabolic waste, and causes edema formation. Brain-wide imaging cannot resolve PVSs, and high-resolution methods cannot access deep tissue. However, theoretical models provide valuable insight. We model the CSF pathway as a network of hydraulic resistances, using published parameter values. A few parameters (permeability of PVSs and the parenchyma, and dimensions of PVSs and astrocyte endfoot gaps) have wide uncertainties, so we focus on the limits of their ranges by analyzing different parametric scenarios. We identify low-resistance PVSs and high-resistance parenchyma as the only scenario that satisfies three essential criteria: that the flow be driven by a small pressure drop, exhibit good CSF perfusion throughout the cortex, and exhibit a substantial increase in flow during sleep. Our results point to the most important parameters, such as astrocyte endfoot gap dimensions, to be measured in future experiments.
format Online
Article
Text
id pubmed-9062681
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-90626812022-05-04 A network model of glymphatic flow under different experimentally-motivated parametric scenarios Tithof, Jeffrey Boster, Kimberly A.S. Bork, Peter A.R. Nedergaard, Maiken Thomas, John H. Kelley, Douglas H. iScience Article Flow of cerebrospinal fluid (CSF) through perivascular spaces (PVSs) in the brain delivers nutrients, clears metabolic waste, and causes edema formation. Brain-wide imaging cannot resolve PVSs, and high-resolution methods cannot access deep tissue. However, theoretical models provide valuable insight. We model the CSF pathway as a network of hydraulic resistances, using published parameter values. A few parameters (permeability of PVSs and the parenchyma, and dimensions of PVSs and astrocyte endfoot gaps) have wide uncertainties, so we focus on the limits of their ranges by analyzing different parametric scenarios. We identify low-resistance PVSs and high-resistance parenchyma as the only scenario that satisfies three essential criteria: that the flow be driven by a small pressure drop, exhibit good CSF perfusion throughout the cortex, and exhibit a substantial increase in flow during sleep. Our results point to the most important parameters, such as astrocyte endfoot gap dimensions, to be measured in future experiments. Elsevier 2022-04-14 /pmc/articles/PMC9062681/ /pubmed/35521514 http://dx.doi.org/10.1016/j.isci.2022.104258 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Tithof, Jeffrey
Boster, Kimberly A.S.
Bork, Peter A.R.
Nedergaard, Maiken
Thomas, John H.
Kelley, Douglas H.
A network model of glymphatic flow under different experimentally-motivated parametric scenarios
title A network model of glymphatic flow under different experimentally-motivated parametric scenarios
title_full A network model of glymphatic flow under different experimentally-motivated parametric scenarios
title_fullStr A network model of glymphatic flow under different experimentally-motivated parametric scenarios
title_full_unstemmed A network model of glymphatic flow under different experimentally-motivated parametric scenarios
title_short A network model of glymphatic flow under different experimentally-motivated parametric scenarios
title_sort network model of glymphatic flow under different experimentally-motivated parametric scenarios
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9062681/
https://www.ncbi.nlm.nih.gov/pubmed/35521514
http://dx.doi.org/10.1016/j.isci.2022.104258
work_keys_str_mv AT tithofjeffrey anetworkmodelofglymphaticflowunderdifferentexperimentallymotivatedparametricscenarios
AT bosterkimberlyas anetworkmodelofglymphaticflowunderdifferentexperimentallymotivatedparametricscenarios
AT borkpeterar anetworkmodelofglymphaticflowunderdifferentexperimentallymotivatedparametricscenarios
AT nedergaardmaiken anetworkmodelofglymphaticflowunderdifferentexperimentallymotivatedparametricscenarios
AT thomasjohnh anetworkmodelofglymphaticflowunderdifferentexperimentallymotivatedparametricscenarios
AT kelleydouglash anetworkmodelofglymphaticflowunderdifferentexperimentallymotivatedparametricscenarios
AT tithofjeffrey networkmodelofglymphaticflowunderdifferentexperimentallymotivatedparametricscenarios
AT bosterkimberlyas networkmodelofglymphaticflowunderdifferentexperimentallymotivatedparametricscenarios
AT borkpeterar networkmodelofglymphaticflowunderdifferentexperimentallymotivatedparametricscenarios
AT nedergaardmaiken networkmodelofglymphaticflowunderdifferentexperimentallymotivatedparametricscenarios
AT thomasjohnh networkmodelofglymphaticflowunderdifferentexperimentallymotivatedparametricscenarios
AT kelleydouglash networkmodelofglymphaticflowunderdifferentexperimentallymotivatedparametricscenarios