Cargando…
Identifying Abnormal CFRP Holes Using Both Unsupervised and Supervised Learning Techniques on In-Process Force, Current, and Vibration Signals
This study aims to conduct abnormality detection by applying machine learning algorithms when drilling a carbon fiber reinforced plastic laminate. In-process signals including current, thrust force, and vibration were captured during the dry drilling experiments using a 6 mm physical vapor deposit d...
Autores principales: | Svinth, Christian N., Wallace, Scott, Stephenson, Daniel B., Kim, Dave, Shin, Kangwoo, Kim, Hyo-Young, Lee, Seok-Woo, Kim, Tae-Gon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korean Society for Precision Engineering
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9062864/ http://dx.doi.org/10.1007/s12541-022-00641-2 |
Ejemplares similares
-
icobrain ms 5.1: Combining unsupervised and supervised approaches for improving the detection of multiple sclerosis lesions
por: Rakić, Mladen, et al.
Publicado: (2021) -
Towards an Optimized Ensemble Feature Selection for DDoS Detection Using Both Supervised and Unsupervised Method †
por: Saha, Sajal, et al.
Publicado: (2022) -
Supervised, semi-supervised and unsupervised inference of gene regulatory networks
por: Maetschke, Stefan R., et al.
Publicado: (2014) -
Supervised and unsupervised learning for data science
por: Berry, Michael W, et al.
Publicado: (2020) -
Sampling techniques for supervised or unsupervised tasks
por: Ros, édéric, et al.
Publicado: (2019)