Cargando…

Solvation effect and binding of rhaponticin with iron: a spectroscopic and DFT/TDDFT study

In this article, both experimental and computational methods are employed to investigate the photophysics of rhaponticin (RH). The bathochromic shift was observed in absorption and fluorescence spectra with increasing solvent polarity, which implied that the charge transition of RH involved was π →...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Zhen, Xue, Ling, Jia, Yuan, Lou, Boyu, Yang, Juxiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9063015/
https://www.ncbi.nlm.nih.gov/pubmed/35520260
http://dx.doi.org/10.1039/c8ra10153a
_version_ 1784699076216881152
author Liu, Zhen
Xue, Ling
Jia, Yuan
Lou, Boyu
Yang, Juxiang
author_facet Liu, Zhen
Xue, Ling
Jia, Yuan
Lou, Boyu
Yang, Juxiang
author_sort Liu, Zhen
collection PubMed
description In this article, both experimental and computational methods are employed to investigate the photophysics of rhaponticin (RH). The bathochromic shift was observed in absorption and fluorescence spectra with increasing solvent polarity, which implied that the charge transition of RH involved was π → π*. The results showed that RH possess strong intramolecular charge transfer (ICT), and the most important parameter to characterize the photophysical behavior of RH is the intermolecular hydrogen bonding ability of the solvent. The hydrogen bonding effect occurred at the localized electron-acceptor oxygen at the glycoside bond. Density functional theory (DFT) and time dependent density functional theory (TDDFT) were used to obtain the most stable structure, electronic excitation energy, dipole moments and charge distribution. The result was found to be 2.23 and 3.67 D in ground state and excited state respectively. Fluorescence quenching of RH owing to the photoinduced electron transfer (PET) is facilitated in alkaline media. The pK(a) value of RH was 6.39, which defined RH as a highly efficient “off–on” switcher. The effect of different metal ions on the fluorescence spectra of RH was also investigated, and the fluorescence quenching of RH depended on the nature of ions. The best performance was accomplished for binding with the Fe(3+) ion. The interactions of RH with the Fe(3+) ion were studied by FT-IR and HPLC, and the binding parameter was calculated by the Stern–Volmer equation. The results obtained reveal the binding activity of RH can make this a candidate as a good source of new agents for thalassemic patients.
format Online
Article
Text
id pubmed-9063015
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-90630152022-05-04 Solvation effect and binding of rhaponticin with iron: a spectroscopic and DFT/TDDFT study Liu, Zhen Xue, Ling Jia, Yuan Lou, Boyu Yang, Juxiang RSC Adv Chemistry In this article, both experimental and computational methods are employed to investigate the photophysics of rhaponticin (RH). The bathochromic shift was observed in absorption and fluorescence spectra with increasing solvent polarity, which implied that the charge transition of RH involved was π → π*. The results showed that RH possess strong intramolecular charge transfer (ICT), and the most important parameter to characterize the photophysical behavior of RH is the intermolecular hydrogen bonding ability of the solvent. The hydrogen bonding effect occurred at the localized electron-acceptor oxygen at the glycoside bond. Density functional theory (DFT) and time dependent density functional theory (TDDFT) were used to obtain the most stable structure, electronic excitation energy, dipole moments and charge distribution. The result was found to be 2.23 and 3.67 D in ground state and excited state respectively. Fluorescence quenching of RH owing to the photoinduced electron transfer (PET) is facilitated in alkaline media. The pK(a) value of RH was 6.39, which defined RH as a highly efficient “off–on” switcher. The effect of different metal ions on the fluorescence spectra of RH was also investigated, and the fluorescence quenching of RH depended on the nature of ions. The best performance was accomplished for binding with the Fe(3+) ion. The interactions of RH with the Fe(3+) ion were studied by FT-IR and HPLC, and the binding parameter was calculated by the Stern–Volmer equation. The results obtained reveal the binding activity of RH can make this a candidate as a good source of new agents for thalassemic patients. The Royal Society of Chemistry 2019-04-11 /pmc/articles/PMC9063015/ /pubmed/35520260 http://dx.doi.org/10.1039/c8ra10153a Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/
spellingShingle Chemistry
Liu, Zhen
Xue, Ling
Jia, Yuan
Lou, Boyu
Yang, Juxiang
Solvation effect and binding of rhaponticin with iron: a spectroscopic and DFT/TDDFT study
title Solvation effect and binding of rhaponticin with iron: a spectroscopic and DFT/TDDFT study
title_full Solvation effect and binding of rhaponticin with iron: a spectroscopic and DFT/TDDFT study
title_fullStr Solvation effect and binding of rhaponticin with iron: a spectroscopic and DFT/TDDFT study
title_full_unstemmed Solvation effect and binding of rhaponticin with iron: a spectroscopic and DFT/TDDFT study
title_short Solvation effect and binding of rhaponticin with iron: a spectroscopic and DFT/TDDFT study
title_sort solvation effect and binding of rhaponticin with iron: a spectroscopic and dft/tddft study
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9063015/
https://www.ncbi.nlm.nih.gov/pubmed/35520260
http://dx.doi.org/10.1039/c8ra10153a
work_keys_str_mv AT liuzhen solvationeffectandbindingofrhaponticinwithironaspectroscopicanddfttddftstudy
AT xueling solvationeffectandbindingofrhaponticinwithironaspectroscopicanddfttddftstudy
AT jiayuan solvationeffectandbindingofrhaponticinwithironaspectroscopicanddfttddftstudy
AT louboyu solvationeffectandbindingofrhaponticinwithironaspectroscopicanddfttddftstudy
AT yangjuxiang solvationeffectandbindingofrhaponticinwithironaspectroscopicanddfttddftstudy