Cargando…
Exploration of chemical space with partial labeled noisy student self-training and self-supervised graph embedding
BACKGROUND: Drug discovery is time-consuming and costly. Machine learning, especially deep learning, shows great potential in quantitative structure–activity relationship (QSAR) modeling to accelerate drug discovery process and reduce its cost. A big challenge in developing robust and generalizable...
Autores principales: | Liu, Yang, Lim, Hansaim, Xie, Lei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9063120/ https://www.ncbi.nlm.nih.gov/pubmed/35501680 http://dx.doi.org/10.1186/s12859-022-04681-3 |
Ejemplares similares
-
Embedding Learning with Triple Trustiness on Noisy Knowledge Graph
por: Zhao, Yu, et al.
Publicado: (2019) -
Graph-Based Self-Training for Semi-Supervised Deep Similarity Learning
por: Wang, Yifan, et al.
Publicado: (2023) -
Self-supervised graph neural network with pre-training generative learning for recommendation systems
por: Min, Xin, et al.
Publicado: (2022) -
Graph Multihead Attention Pooling with Self-Supervised Learning
por: Wang, Yu, et al.
Publicado: (2022) -
Hierarchical Molecular Graph Self-Supervised Learning for property prediction
por: Zang, Xuan, et al.
Publicado: (2023)