Cargando…
Arabic fake news detection based on deep contextualized embedding models
Social media is becoming a source of news for many people due to its ease and freedom of use. As a result, fake news has been spreading quickly and easily regardless of its credibility, especially in the last decade. Fake news publishers take advantage of critical situations such as the Covid-19 pan...
Autores principales: | Nassif, Ali Bou, Elnagar, Ashraf, Elgendy, Omar, Afadar, Yaman |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer London
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9063258/ https://www.ncbi.nlm.nih.gov/pubmed/35529091 http://dx.doi.org/10.1007/s00521-022-07206-4 |
Ejemplares similares
-
Arabic Fake News Detection Based on Textual Analysis
por: Himdi, Hanen, et al.
Publicado: (2022) -
Wearable Devices and Explainable Unsupervised Learning for COVID-19 Detection and Monitoring
por: Hasasneh, Ahmad, et al.
Publicado: (2023) -
AFND: Arabic fake news dataset for the detection and classification of articles credibility
por: Khalil, Ashwaq, et al.
Publicado: (2022) -
SANAD: Single-label Arabic News Articles Dataset for automatic text categorization
por: Einea, Omar, et al.
Publicado: (2019) -
Deep Ensemble Fake News Detection Model Using Sequential Deep Learning Technique
por: Ali, Abdullah Marish, et al.
Publicado: (2022)