Cargando…
Multiframe Evolving Dynamic Functional Connectivity (EVOdFNC): A Method for Constructing and Investigating Functional Brain Motifs
The study of brain network connectivity as a time-varying property began relatively recently and, to date, has remained primarily concerned with capturing a handful of discrete static states that characterize connectivity as measured on a timescale shorter than that of the full scan. Capturing group...
Autores principales: | Miller, Robyn L., Vergara, Victor M., Pearlson, Godfrey D., Calhoun, Vince D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9063321/ https://www.ncbi.nlm.nih.gov/pubmed/35516809 http://dx.doi.org/10.3389/fnins.2022.770468 |
Ejemplares similares
-
Evaluation of boundaries between mood and psychosis disorder using dynamic functional network connectivity (dFNC) via deep learning classification
por: Rokham, Hooman, et al.
Publicado: (2023) -
Whole brain polarity regime dynamics are significantly disrupted in schizophrenia and correlate strongly with network connectivity measures
por: Miller, Robyn L., et al.
Publicado: (2019) -
Classification of schizophrenia patients based on resting-state functional network connectivity
por: Arbabshirani, Mohammad R., et al.
Publicado: (2013) -
Convergent Approaches for Defining Functional Imaging Endophenotypes in Schizophrenia
por: Pearlson, Godfrey D., et al.
Publicado: (2009) -
Functional Brain Networks in Schizophrenia: A Review
por: Calhoun, Vince D., et al.
Publicado: (2009)