Cargando…
Direct conversion of cellulose to l-lactic acid by a novel thermophilic Caldicellulosiruptor strain
BACKGROUND: Consolidated bioprocessing (CBP) of lignocellulosic biomass to l-lactic acid using thermophilic cellulolytic/hemicellulolytic bacteria provides a promising solution for efficient lignocellulose conversion without the need for additional cellulolytic/hemicellulolytic enzymes. Most studies...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9063331/ https://www.ncbi.nlm.nih.gov/pubmed/35501875 http://dx.doi.org/10.1186/s13068-022-02137-7 |
Sumario: | BACKGROUND: Consolidated bioprocessing (CBP) of lignocellulosic biomass to l-lactic acid using thermophilic cellulolytic/hemicellulolytic bacteria provides a promising solution for efficient lignocellulose conversion without the need for additional cellulolytic/hemicellulolytic enzymes. Most studies on the mesophilic and thermophilic CBP of lignocellulose to lactic acid concentrate on cultivation of non-cellulolytic mesophilic and thermophilic bacteria at temperatures of 30–55 °C with external addition of cellulases/hemicellulases for saccharification of substrates. RESULTS: l-Lactic acid was generated by fermenting microcrystalline cellulose or lignocellulosic substrates with a novel thermophilic anaerobic bacterium Caldicellulosiruptor sp. DIB 104C without adding externally produced cellulolytic/hemicellulolytic enzymes. Selection of this novel bacterium strain for lactic acid production is described as well as the adaptive evolution towards increasing the l-lactic acid concentration from 6 to 70 g/l on microcrystalline cellulose. The evolved strains grown on microcrystalline cellulose show a maximum lactic acid production rate of 1.0 g/l*h and a lactic acid ratio in the total organic fermentation products of 96 wt%. The enantiomeric purity of the l-lactic acid generated is 99.4%. In addition, the lactic acid production by these strains on several other types of cellulose and lignocellulosic feedstocks is also reported. CONCLUSIONS: The evolved strains originating from Caldicellulosiruptor sp. DIB 104C were capable of producing unexpectedly large amounts of l-lactic acid from microcrystalline cellulose in fermenters. These strains produce l-lactic acid also from lignocellulosic feedstocks and thus represent an ideal starting point for development of a highly integrated commercial l-lactic acid production process from such feedstocks. |
---|