Cargando…
The efficacy of deep learning models in the diagnosis of endometrial cancer using MRI: a comparison with radiologists
PURPOSE: To compare the diagnostic performance of deep learning models using convolutional neural networks (CNN) with that of radiologists in diagnosing endometrial cancer and to verify suitable imaging conditions. METHODS: This retrospective study included patients with endometrial cancer or non-ca...
Autores principales: | Urushibara, Aiko, Saida, Tsukasa, Mori, Kensaku, Ishiguro, Toshitaka, Inoue, Kei, Masumoto, Tomohiko, Satoh, Toyomi, Nakajima, Takahito |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9063362/ https://www.ncbi.nlm.nih.gov/pubmed/35501705 http://dx.doi.org/10.1186/s12880-022-00808-3 |
Ejemplares similares
-
Diagnosing Ovarian Cancer on MRI: A Preliminary Study Comparing Deep Learning and Radiologist Assessments
por: Saida, Tsukasa, et al.
Publicado: (2022) -
Differentiation of carcinosarcoma from endometrial carcinoma on magnetic resonance imaging using deep learning
por: Saida, Tsukasa, et al.
Publicado: (2022) -
Differences in the position of endometriosis-associated and non-associated ovarian cancer relative to the uterus
por: Saida, Tsukasa, et al.
Publicado: (2023) -
A case of Pseudo-Meigs’ syndrome due to Brenner tumor
por: Abe, Tetsuya, et al.
Publicado: (2023) -
Clinical and MRI Characteristics of Uterine Cervical Adenocarcinoma: Its Variants and Mimics
por: Saida, Tsukasa, et al.
Publicado: (2019)