Cargando…

Plant trait measurement in 3D for growth monitoring

BACKGROUND: There is a demand for non-destructive systems in plant phenotyping which could precisely measure plant traits for growth monitoring. In this study, the growth of chilli plants (Capsicum annum L.) was monitored in outdoor conditions. A non-destructive solution is proposed for growth monit...

Descripción completa

Detalles Bibliográficos
Autores principales: Paturkar, Abhipray, Sen Gupta, Gourab, Bailey, Donald
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9063380/
https://www.ncbi.nlm.nih.gov/pubmed/35505428
http://dx.doi.org/10.1186/s13007-022-00889-9
Descripción
Sumario:BACKGROUND: There is a demand for non-destructive systems in plant phenotyping which could precisely measure plant traits for growth monitoring. In this study, the growth of chilli plants (Capsicum annum L.) was monitored in outdoor conditions. A non-destructive solution is proposed for growth monitoring in 3D using a single mobile phone camera based on a structure from motion algorithm. A method to measure leaf length and leaf width when the leaf is curled is also proposed. Various plant traits such as number of leaves, stem height, leaf length, and leaf width were measured from the reconstructed and segmented 3D models at different plant growth stages. RESULTS: The accuracy of the proposed system is measured by comparing the values derived from the 3D plant model with manual measurements. The results demonstrate that the proposed system has potential to non-destructively monitor plant growth in outdoor conditions with high precision, when compared to the state-of-the-art systems. CONCLUSIONS: In conclusion, this study demonstrated that the methods proposed to calculate plant traits can monitor plant growth in outdoor conditions.