Cargando…
Structural insights into the calcium dependence of Stig cyclases
The Stig cyclases from Stigonematalean cyanobacteria are classified as a novel type of calcium-dependent cyclases which catalyze an uncommon reaction cascade comprising Cope rearrangement, 6-exo-trig cyclization, and electrophilic aromatic substitution. Previously we found two calcium ions near the...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9063808/ https://www.ncbi.nlm.nih.gov/pubmed/35520811 http://dx.doi.org/10.1039/c9ra00960d |
_version_ | 1784699240865333248 |
---|---|
author | Tang, Xueke Xue, Jing Yang, Yunyun Ko, Tzu-Ping Chen, Chin-Yu Dai, Longhai Guo, Rey-Ting Zhang, Yonghui Chen, Chun-Chi |
author_facet | Tang, Xueke Xue, Jing Yang, Yunyun Ko, Tzu-Ping Chen, Chin-Yu Dai, Longhai Guo, Rey-Ting Zhang, Yonghui Chen, Chun-Chi |
author_sort | Tang, Xueke |
collection | PubMed |
description | The Stig cyclases from Stigonematalean cyanobacteria are classified as a novel type of calcium-dependent cyclases which catalyze an uncommon reaction cascade comprising Cope rearrangement, 6-exo-trig cyclization, and electrophilic aromatic substitution. Previously we found two calcium ions near the substrate-binding pocket. The calcium-coordinating residues are conserved in all Stig cyclases. In the present study, we use site-directed mutagenesis to investigate the role of calcium coordination. By individually mutating the coordinating residues in either of the Ca(2+)-binding sites to alanine, the enzyme activity is significantly reduced, suggesting that the presence of Ca(2+) in both sites is essential for catalysis. Furthermore, the crystal structure of N137A, in which the Ca(2+)-binding N137 is replaced by Ala, shows significant local conformational changes, resulting in a squeezed substrate-binding pocket that makes substrate entry ineffective. In conclusion, calcium coordination is important in setting up the structural elements for catalysis. These results add to the fundamental understanding of the mechanism of action of the calcium-dependent Stig cyclases. |
format | Online Article Text |
id | pubmed-9063808 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-90638082022-05-04 Structural insights into the calcium dependence of Stig cyclases Tang, Xueke Xue, Jing Yang, Yunyun Ko, Tzu-Ping Chen, Chin-Yu Dai, Longhai Guo, Rey-Ting Zhang, Yonghui Chen, Chun-Chi RSC Adv Chemistry The Stig cyclases from Stigonematalean cyanobacteria are classified as a novel type of calcium-dependent cyclases which catalyze an uncommon reaction cascade comprising Cope rearrangement, 6-exo-trig cyclization, and electrophilic aromatic substitution. Previously we found two calcium ions near the substrate-binding pocket. The calcium-coordinating residues are conserved in all Stig cyclases. In the present study, we use site-directed mutagenesis to investigate the role of calcium coordination. By individually mutating the coordinating residues in either of the Ca(2+)-binding sites to alanine, the enzyme activity is significantly reduced, suggesting that the presence of Ca(2+) in both sites is essential for catalysis. Furthermore, the crystal structure of N137A, in which the Ca(2+)-binding N137 is replaced by Ala, shows significant local conformational changes, resulting in a squeezed substrate-binding pocket that makes substrate entry ineffective. In conclusion, calcium coordination is important in setting up the structural elements for catalysis. These results add to the fundamental understanding of the mechanism of action of the calcium-dependent Stig cyclases. The Royal Society of Chemistry 2019-04-30 /pmc/articles/PMC9063808/ /pubmed/35520811 http://dx.doi.org/10.1039/c9ra00960d Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry Tang, Xueke Xue, Jing Yang, Yunyun Ko, Tzu-Ping Chen, Chin-Yu Dai, Longhai Guo, Rey-Ting Zhang, Yonghui Chen, Chun-Chi Structural insights into the calcium dependence of Stig cyclases |
title | Structural insights into the calcium dependence of Stig cyclases |
title_full | Structural insights into the calcium dependence of Stig cyclases |
title_fullStr | Structural insights into the calcium dependence of Stig cyclases |
title_full_unstemmed | Structural insights into the calcium dependence of Stig cyclases |
title_short | Structural insights into the calcium dependence of Stig cyclases |
title_sort | structural insights into the calcium dependence of stig cyclases |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9063808/ https://www.ncbi.nlm.nih.gov/pubmed/35520811 http://dx.doi.org/10.1039/c9ra00960d |
work_keys_str_mv | AT tangxueke structuralinsightsintothecalciumdependenceofstigcyclases AT xuejing structuralinsightsintothecalciumdependenceofstigcyclases AT yangyunyun structuralinsightsintothecalciumdependenceofstigcyclases AT kotzuping structuralinsightsintothecalciumdependenceofstigcyclases AT chenchinyu structuralinsightsintothecalciumdependenceofstigcyclases AT dailonghai structuralinsightsintothecalciumdependenceofstigcyclases AT guoreyting structuralinsightsintothecalciumdependenceofstigcyclases AT zhangyonghui structuralinsightsintothecalciumdependenceofstigcyclases AT chenchunchi structuralinsightsintothecalciumdependenceofstigcyclases |