Cargando…

Vertical alignment of liquid crystals on plant-based vanillin derivative-substituted polystyrene films

To investigate the alignment behavior of liquid crystal (LC) molecules, we synthesized a series of vanillin derivative-substituted polystyrene films (PVAN#, # = 20, 40, 60, 80, and 100), where # is the substitution ratio (%) of the vanillyl butyl ether (VAN) moiety as one of the bio-renewable vanill...

Descripción completa

Detalles Bibliográficos
Autores principales: Ju, Changha, Park, Chanhyuk, Kim, Taehyung, Kang, Hyo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9064025/
https://www.ncbi.nlm.nih.gov/pubmed/35519337
http://dx.doi.org/10.1039/c9ra02629k
Descripción
Sumario:To investigate the alignment behavior of liquid crystal (LC) molecules, we synthesized a series of vanillin derivative-substituted polystyrene films (PVAN#, # = 20, 40, 60, 80, and 100), where # is the substitution ratio (%) of the vanillyl butyl ether (VAN) moiety as one of the bio-renewable vanillin derivatives. In general, a vertical LC alignment was observed in the LC cell fabricated using the polymer film having a higher molar content of VAN. Moreover, the surface energies of these polymer films were strongly related to the vertical LC alignment behavior. For example, a uniform vertical alignment was observed when the polar surface energy of the polymer was lower than approximately 2.05 mJ m(−2), induced by the nonpolar and long carbon groups in the plant-based vanillin moiety. The LC cell fabricated using PVAN100 had good electrooptical characteristics such as voltage holding ratio and residual direct-current voltage and stable alignment under extreme external conditions.