Cargando…
Repair of dentine-related lesions without a drill or injection
For covering the shortages of traditional treatments, a novel and non-invasive system was developed with the simple adaption of nature's own repair process, while an extrinsic electric field was introduced to improve its remineralization kinetics. In an in vivo study, acid-etched rabbit dentine...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9064202/ https://www.ncbi.nlm.nih.gov/pubmed/35516323 http://dx.doi.org/10.1039/c9ra02759a |
Sumario: | For covering the shortages of traditional treatments, a novel and non-invasive system was developed with the simple adaption of nature's own repair process, while an extrinsic electric field was introduced to improve its remineralization kinetics. In an in vivo study, acid-etched rabbit dentine was used to evaluate the remineralization efficacy and safety of the system. The exposed dentine tubules were fully occluded after 5 hours/1.0 mA and 8 hours/0.5 mA of remineralization. After 5 hours of remineralization (1.0 mA), the micro-hardness of the demineralized dentine was fully recovered, equal to native rabbit dentine. Haematoxylin–eosin staining demonstrated no obvious inflammatory reaction. This study provides a feasible solution to realize rapid repair of dentine. |
---|