Cargando…
Impact of tunable 2-(1H-indol-3-yl)acetonitrile based fluorophores towards optical, thermal and electroluminescence properties
Herein, we have synthesized 4,5-diphenyl-1H-imidazole and 2-(1H-indol-3-yl)acetonitrile based donor–π–acceptor fluorophores and studied their optical, thermal, electroluminescence properties. Both the fluorophores exhibit high fluorescence quantum yield (Φ(f) = <0.6) and good thermal stability (T...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9064231/ https://www.ncbi.nlm.nih.gov/pubmed/35519310 http://dx.doi.org/10.1039/c8ra10448d |
_version_ | 1784699326359928832 |
---|---|
author | Muruganantham, Subramanian Velmurugan, Gunasekaran Jesuraj, Justin Hafeez, Hassan Ryu, Seung Yoon Venuvanalingam, Ponnambalam Renganathan, Rajalingam |
author_facet | Muruganantham, Subramanian Velmurugan, Gunasekaran Jesuraj, Justin Hafeez, Hassan Ryu, Seung Yoon Venuvanalingam, Ponnambalam Renganathan, Rajalingam |
author_sort | Muruganantham, Subramanian |
collection | PubMed |
description | Herein, we have synthesized 4,5-diphenyl-1H-imidazole and 2-(1H-indol-3-yl)acetonitrile based donor–π–acceptor fluorophores and studied their optical, thermal, electroluminescence properties. Both the fluorophores exhibit high fluorescence quantum yield (Φ(f) = <0.6) and good thermal stability (T(d10) = <300 °C), and could be excellent candidates for OLED applications. Moreover, the ground and excited state properties of the compounds were analysed in various solvents with different polarities. The geometric and electronic structures of the fluorophores in the ground and excited states have been studied using density functional theory (DFT) and time-dependent density functional theory (TDDFT) methods. The absorption of BIPIAN and BITIAN in various solvents corresponds to S(0) → S(1) transitions and the most intense bands with respect to the higher oscillator strengths are mainly contributed by HOMO → LUMO transition. Significantly, the vacuum deposited non-doped OLED device was fabricated using BITIAN as an emitter, and the device shows electroluminescence (EL) at 564 nm, maximum current efficiency (CE) 0.687 cd A(−1) and a maximum external quantum efficiency (EQE) of 0.24%. |
format | Online Article Text |
id | pubmed-9064231 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-90642312022-05-04 Impact of tunable 2-(1H-indol-3-yl)acetonitrile based fluorophores towards optical, thermal and electroluminescence properties Muruganantham, Subramanian Velmurugan, Gunasekaran Jesuraj, Justin Hafeez, Hassan Ryu, Seung Yoon Venuvanalingam, Ponnambalam Renganathan, Rajalingam RSC Adv Chemistry Herein, we have synthesized 4,5-diphenyl-1H-imidazole and 2-(1H-indol-3-yl)acetonitrile based donor–π–acceptor fluorophores and studied their optical, thermal, electroluminescence properties. Both the fluorophores exhibit high fluorescence quantum yield (Φ(f) = <0.6) and good thermal stability (T(d10) = <300 °C), and could be excellent candidates for OLED applications. Moreover, the ground and excited state properties of the compounds were analysed in various solvents with different polarities. The geometric and electronic structures of the fluorophores in the ground and excited states have been studied using density functional theory (DFT) and time-dependent density functional theory (TDDFT) methods. The absorption of BIPIAN and BITIAN in various solvents corresponds to S(0) → S(1) transitions and the most intense bands with respect to the higher oscillator strengths are mainly contributed by HOMO → LUMO transition. Significantly, the vacuum deposited non-doped OLED device was fabricated using BITIAN as an emitter, and the device shows electroluminescence (EL) at 564 nm, maximum current efficiency (CE) 0.687 cd A(−1) and a maximum external quantum efficiency (EQE) of 0.24%. The Royal Society of Chemistry 2019-05-09 /pmc/articles/PMC9064231/ /pubmed/35519310 http://dx.doi.org/10.1039/c8ra10448d Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Muruganantham, Subramanian Velmurugan, Gunasekaran Jesuraj, Justin Hafeez, Hassan Ryu, Seung Yoon Venuvanalingam, Ponnambalam Renganathan, Rajalingam Impact of tunable 2-(1H-indol-3-yl)acetonitrile based fluorophores towards optical, thermal and electroluminescence properties |
title | Impact of tunable 2-(1H-indol-3-yl)acetonitrile based fluorophores towards optical, thermal and electroluminescence properties |
title_full | Impact of tunable 2-(1H-indol-3-yl)acetonitrile based fluorophores towards optical, thermal and electroluminescence properties |
title_fullStr | Impact of tunable 2-(1H-indol-3-yl)acetonitrile based fluorophores towards optical, thermal and electroluminescence properties |
title_full_unstemmed | Impact of tunable 2-(1H-indol-3-yl)acetonitrile based fluorophores towards optical, thermal and electroluminescence properties |
title_short | Impact of tunable 2-(1H-indol-3-yl)acetonitrile based fluorophores towards optical, thermal and electroluminescence properties |
title_sort | impact of tunable 2-(1h-indol-3-yl)acetonitrile based fluorophores towards optical, thermal and electroluminescence properties |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9064231/ https://www.ncbi.nlm.nih.gov/pubmed/35519310 http://dx.doi.org/10.1039/c8ra10448d |
work_keys_str_mv | AT murugananthamsubramanian impactoftunable21hindol3ylacetonitrilebasedfluorophorestowardsopticalthermalandelectroluminescenceproperties AT velmurugangunasekaran impactoftunable21hindol3ylacetonitrilebasedfluorophorestowardsopticalthermalandelectroluminescenceproperties AT jesurajjustin impactoftunable21hindol3ylacetonitrilebasedfluorophorestowardsopticalthermalandelectroluminescenceproperties AT hafeezhassan impactoftunable21hindol3ylacetonitrilebasedfluorophorestowardsopticalthermalandelectroluminescenceproperties AT ryuseungyoon impactoftunable21hindol3ylacetonitrilebasedfluorophorestowardsopticalthermalandelectroluminescenceproperties AT venuvanalingamponnambalam impactoftunable21hindol3ylacetonitrilebasedfluorophorestowardsopticalthermalandelectroluminescenceproperties AT renganathanrajalingam impactoftunable21hindol3ylacetonitrilebasedfluorophorestowardsopticalthermalandelectroluminescenceproperties |