Cargando…

Natural stibnite ore (Sb(2)S(3)) embedded in sulfur-doped carbon sheets: enhanced electrochemical properties as anode for sodium ions storage

Antimony sulfide (Sb(2)S(3)) has drawn widespread attention as an ideal candidate anode material for sodium-ion batteries (SIBs) due to its high specific capacity of 946 mA h g(−1) in conversion and alloy reactions. Nevertheless, volume expansion, a common flaw for conversion-alloy type materials du...

Descripción completa

Detalles Bibliográficos
Autores principales: Deng, Mingxiang, Li, Sijie, Hong, Wanwan, Jiang, Yunling, Xu, Wei, Shuai, Honglei, Li, Hui, Wang, Wenlei, Hou, Hongshuai, Ji, Xiaobo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9064274/
https://www.ncbi.nlm.nih.gov/pubmed/35514828
http://dx.doi.org/10.1039/c9ra02301a
_version_ 1784699336954740736
author Deng, Mingxiang
Li, Sijie
Hong, Wanwan
Jiang, Yunling
Xu, Wei
Shuai, Honglei
Li, Hui
Wang, Wenlei
Hou, Hongshuai
Ji, Xiaobo
author_facet Deng, Mingxiang
Li, Sijie
Hong, Wanwan
Jiang, Yunling
Xu, Wei
Shuai, Honglei
Li, Hui
Wang, Wenlei
Hou, Hongshuai
Ji, Xiaobo
author_sort Deng, Mingxiang
collection PubMed
description Antimony sulfide (Sb(2)S(3)) has drawn widespread attention as an ideal candidate anode material for sodium-ion batteries (SIBs) due to its high specific capacity of 946 mA h g(−1) in conversion and alloy reactions. Nevertheless, volume expansion, a common flaw for conversion-alloy type materials during the sodiation and desodiation processes, is bad for the structure of materials and thus obstructs the application of antimony sulfide in energy storage. A common approach to solve this problem is by introducing carbon or other matrices as buffer material. However, the common preparation of Sb(2)S(3) could result in environmental pollution and excessive energy consumption in most cases. To incorporate green chemistry, natural stibnite ore (Sb(2)S(3)) after modification via carbon sheets was applied as a first-hand material in SIBs through a facile and efficient strategy. The unique composites exhibited an outstanding electrochemical performance with a higher reversible capacity, a better rate capability, as well as an excellent cycling stability compared to that of the natural stibnite ore. In short, the study is expected to offer a new approach to improve Sb(2)S(3) composites as an anode in SIBs and a reference for the development of natural ore as a first-hand material in energy storage.
format Online
Article
Text
id pubmed-9064274
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-90642742022-05-04 Natural stibnite ore (Sb(2)S(3)) embedded in sulfur-doped carbon sheets: enhanced electrochemical properties as anode for sodium ions storage Deng, Mingxiang Li, Sijie Hong, Wanwan Jiang, Yunling Xu, Wei Shuai, Honglei Li, Hui Wang, Wenlei Hou, Hongshuai Ji, Xiaobo RSC Adv Chemistry Antimony sulfide (Sb(2)S(3)) has drawn widespread attention as an ideal candidate anode material for sodium-ion batteries (SIBs) due to its high specific capacity of 946 mA h g(−1) in conversion and alloy reactions. Nevertheless, volume expansion, a common flaw for conversion-alloy type materials during the sodiation and desodiation processes, is bad for the structure of materials and thus obstructs the application of antimony sulfide in energy storage. A common approach to solve this problem is by introducing carbon or other matrices as buffer material. However, the common preparation of Sb(2)S(3) could result in environmental pollution and excessive energy consumption in most cases. To incorporate green chemistry, natural stibnite ore (Sb(2)S(3)) after modification via carbon sheets was applied as a first-hand material in SIBs through a facile and efficient strategy. The unique composites exhibited an outstanding electrochemical performance with a higher reversible capacity, a better rate capability, as well as an excellent cycling stability compared to that of the natural stibnite ore. In short, the study is expected to offer a new approach to improve Sb(2)S(3) composites as an anode in SIBs and a reference for the development of natural ore as a first-hand material in energy storage. The Royal Society of Chemistry 2019-05-15 /pmc/articles/PMC9064274/ /pubmed/35514828 http://dx.doi.org/10.1039/c9ra02301a Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/
spellingShingle Chemistry
Deng, Mingxiang
Li, Sijie
Hong, Wanwan
Jiang, Yunling
Xu, Wei
Shuai, Honglei
Li, Hui
Wang, Wenlei
Hou, Hongshuai
Ji, Xiaobo
Natural stibnite ore (Sb(2)S(3)) embedded in sulfur-doped carbon sheets: enhanced electrochemical properties as anode for sodium ions storage
title Natural stibnite ore (Sb(2)S(3)) embedded in sulfur-doped carbon sheets: enhanced electrochemical properties as anode for sodium ions storage
title_full Natural stibnite ore (Sb(2)S(3)) embedded in sulfur-doped carbon sheets: enhanced electrochemical properties as anode for sodium ions storage
title_fullStr Natural stibnite ore (Sb(2)S(3)) embedded in sulfur-doped carbon sheets: enhanced electrochemical properties as anode for sodium ions storage
title_full_unstemmed Natural stibnite ore (Sb(2)S(3)) embedded in sulfur-doped carbon sheets: enhanced electrochemical properties as anode for sodium ions storage
title_short Natural stibnite ore (Sb(2)S(3)) embedded in sulfur-doped carbon sheets: enhanced electrochemical properties as anode for sodium ions storage
title_sort natural stibnite ore (sb(2)s(3)) embedded in sulfur-doped carbon sheets: enhanced electrochemical properties as anode for sodium ions storage
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9064274/
https://www.ncbi.nlm.nih.gov/pubmed/35514828
http://dx.doi.org/10.1039/c9ra02301a
work_keys_str_mv AT dengmingxiang naturalstibniteoresb2s3embeddedinsulfurdopedcarbonsheetsenhancedelectrochemicalpropertiesasanodeforsodiumionsstorage
AT lisijie naturalstibniteoresb2s3embeddedinsulfurdopedcarbonsheetsenhancedelectrochemicalpropertiesasanodeforsodiumionsstorage
AT hongwanwan naturalstibniteoresb2s3embeddedinsulfurdopedcarbonsheetsenhancedelectrochemicalpropertiesasanodeforsodiumionsstorage
AT jiangyunling naturalstibniteoresb2s3embeddedinsulfurdopedcarbonsheetsenhancedelectrochemicalpropertiesasanodeforsodiumionsstorage
AT xuwei naturalstibniteoresb2s3embeddedinsulfurdopedcarbonsheetsenhancedelectrochemicalpropertiesasanodeforsodiumionsstorage
AT shuaihonglei naturalstibniteoresb2s3embeddedinsulfurdopedcarbonsheetsenhancedelectrochemicalpropertiesasanodeforsodiumionsstorage
AT lihui naturalstibniteoresb2s3embeddedinsulfurdopedcarbonsheetsenhancedelectrochemicalpropertiesasanodeforsodiumionsstorage
AT wangwenlei naturalstibniteoresb2s3embeddedinsulfurdopedcarbonsheetsenhancedelectrochemicalpropertiesasanodeforsodiumionsstorage
AT houhongshuai naturalstibniteoresb2s3embeddedinsulfurdopedcarbonsheetsenhancedelectrochemicalpropertiesasanodeforsodiumionsstorage
AT jixiaobo naturalstibniteoresb2s3embeddedinsulfurdopedcarbonsheetsenhancedelectrochemicalpropertiesasanodeforsodiumionsstorage