Cargando…
Aromatic molecular junctions between graphene sheets: a molecular dynamics screening for enhanced thermal conductance
The proper design and synthesis of molecular junctions for the purpose of establishing percolative networks of conductive nanoparticles represent an opportunity to develop more efficient thermally-conductive nanocomposites, with several potential applications in heat management. In this work, theore...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9064313/ https://www.ncbi.nlm.nih.gov/pubmed/35514816 http://dx.doi.org/10.1039/c9ra00894b |
_version_ | 1784699346298601472 |
---|---|
author | Di Pierro, Alessandro Bernal, Maria Mar Martinez, Diego Mortazavi, Bohayra Saracco, Guido Fina, Alberto |
author_facet | Di Pierro, Alessandro Bernal, Maria Mar Martinez, Diego Mortazavi, Bohayra Saracco, Guido Fina, Alberto |
author_sort | Di Pierro, Alessandro |
collection | PubMed |
description | The proper design and synthesis of molecular junctions for the purpose of establishing percolative networks of conductive nanoparticles represent an opportunity to develop more efficient thermally-conductive nanocomposites, with several potential applications in heat management. In this work, theoretical classical molecular dynamics simulations were conducted to design and evaluate thermal conductance of various molecules serving as thermal bridges between graphene nanosheets. A wide range of molecular junctions was studied, with a focus on the chemical structures that are viable to synthesize at laboratory scale. Thermal conductances were correlated with the length and mechanical stiffness of the chemical junctions. The simulated tensile deformation of the molecular junction revealed that the mechanical response is very sensitive to small differences in the chemical structure. The analysis of the vibrational density of states provided insights into the interfacial vibrational properties. A knowledge-driven design of the molecular junction structures is proposed, aiming at controlling interfacial thermal transport in nanomaterials. This approach may allow for the design of more efficient heat management in nanodevices, including flexible heat spreaders, bulk heat exchangers and heat storage devices. |
format | Online Article Text |
id | pubmed-9064313 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-90643132022-05-04 Aromatic molecular junctions between graphene sheets: a molecular dynamics screening for enhanced thermal conductance Di Pierro, Alessandro Bernal, Maria Mar Martinez, Diego Mortazavi, Bohayra Saracco, Guido Fina, Alberto RSC Adv Chemistry The proper design and synthesis of molecular junctions for the purpose of establishing percolative networks of conductive nanoparticles represent an opportunity to develop more efficient thermally-conductive nanocomposites, with several potential applications in heat management. In this work, theoretical classical molecular dynamics simulations were conducted to design and evaluate thermal conductance of various molecules serving as thermal bridges between graphene nanosheets. A wide range of molecular junctions was studied, with a focus on the chemical structures that are viable to synthesize at laboratory scale. Thermal conductances were correlated with the length and mechanical stiffness of the chemical junctions. The simulated tensile deformation of the molecular junction revealed that the mechanical response is very sensitive to small differences in the chemical structure. The analysis of the vibrational density of states provided insights into the interfacial vibrational properties. A knowledge-driven design of the molecular junction structures is proposed, aiming at controlling interfacial thermal transport in nanomaterials. This approach may allow for the design of more efficient heat management in nanodevices, including flexible heat spreaders, bulk heat exchangers and heat storage devices. The Royal Society of Chemistry 2019-05-17 /pmc/articles/PMC9064313/ /pubmed/35514816 http://dx.doi.org/10.1039/c9ra00894b Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Di Pierro, Alessandro Bernal, Maria Mar Martinez, Diego Mortazavi, Bohayra Saracco, Guido Fina, Alberto Aromatic molecular junctions between graphene sheets: a molecular dynamics screening for enhanced thermal conductance |
title | Aromatic molecular junctions between graphene sheets: a molecular dynamics screening for enhanced thermal conductance |
title_full | Aromatic molecular junctions between graphene sheets: a molecular dynamics screening for enhanced thermal conductance |
title_fullStr | Aromatic molecular junctions between graphene sheets: a molecular dynamics screening for enhanced thermal conductance |
title_full_unstemmed | Aromatic molecular junctions between graphene sheets: a molecular dynamics screening for enhanced thermal conductance |
title_short | Aromatic molecular junctions between graphene sheets: a molecular dynamics screening for enhanced thermal conductance |
title_sort | aromatic molecular junctions between graphene sheets: a molecular dynamics screening for enhanced thermal conductance |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9064313/ https://www.ncbi.nlm.nih.gov/pubmed/35514816 http://dx.doi.org/10.1039/c9ra00894b |
work_keys_str_mv | AT dipierroalessandro aromaticmolecularjunctionsbetweengraphenesheetsamoleculardynamicsscreeningforenhancedthermalconductance AT bernalmariamar aromaticmolecularjunctionsbetweengraphenesheetsamoleculardynamicsscreeningforenhancedthermalconductance AT martinezdiego aromaticmolecularjunctionsbetweengraphenesheetsamoleculardynamicsscreeningforenhancedthermalconductance AT mortazavibohayra aromaticmolecularjunctionsbetweengraphenesheetsamoleculardynamicsscreeningforenhancedthermalconductance AT saraccoguido aromaticmolecularjunctionsbetweengraphenesheetsamoleculardynamicsscreeningforenhancedthermalconductance AT finaalberto aromaticmolecularjunctionsbetweengraphenesheetsamoleculardynamicsscreeningforenhancedthermalconductance |