Cargando…

Bio-fabrication of pigment-capped silver nanoparticles encountering antibiotic-resistant strains and their cytotoxic effect towards human epidermoid larynx carcinoma (HEp-2) cells

Bacterial biomolecule-mediated nanoparticle (NP) synthesis constitutes a reliable, eco-friendly approach that ameliorates green-chemistry principles. In this study, stable silver nanoparticles were synthesized by exposing aqueous silver ions to an extracellular diffusible pigment produced by Pseudom...

Descripción completa

Detalles Bibliográficos
Autores principales: Muthukrishnan, Lakshmipathy, Chellappa, Muralidharan, Nanda, Anima, Thukkaram, Sudhakar, Selvaraj, Gracyfathima, Muthiah, Bavanilatha, Sagadevan, Suresh, Lett, J. Anita
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9064322/
https://www.ncbi.nlm.nih.gov/pubmed/35521408
http://dx.doi.org/10.1039/c9ra01072f
_version_ 1784699348582400000
author Muthukrishnan, Lakshmipathy
Chellappa, Muralidharan
Nanda, Anima
Thukkaram, Sudhakar
Selvaraj, Gracyfathima
Muthiah, Bavanilatha
Sagadevan, Suresh
Lett, J. Anita
author_facet Muthukrishnan, Lakshmipathy
Chellappa, Muralidharan
Nanda, Anima
Thukkaram, Sudhakar
Selvaraj, Gracyfathima
Muthiah, Bavanilatha
Sagadevan, Suresh
Lett, J. Anita
author_sort Muthukrishnan, Lakshmipathy
collection PubMed
description Bacterial biomolecule-mediated nanoparticle (NP) synthesis constitutes a reliable, eco-friendly approach that ameliorates green-chemistry principles. In this study, stable silver nanoparticles were synthesized by exposing aqueous silver ions to an extracellular diffusible pigment produced by Pseudomonas aeruginosa (PA6) under optimized laboratory conditions. Spectroscopic and microscopic analyses showed the typical characteristics of silver with an average size of ∼28.30 nm and spherical shape. The particles were polydispersed and showed no definite agglomeration with a zeta potential of −32.3 mV, conferring stability. Antimicrobial studies were carried out using 5, 15, 25 and 50 μg mL(−1) concentrations of pcAgNPs, which showed significant antibacterial activity toward clinically important pathogens at all concentrations compared to with the control sample. The bactericidal effect induced by pcAgNPs associated with cell damage was well demonstrated using electron microscopic studies. ROS production was measured using the DCFH-DA method and the oxidative stress was assessed by measuring the reduced glutathione (GSH) levels. Cytotoxicity studies on HEp-2 (Human Epidermoid Larynx Carcinoma) cells exposed to pcAgNPs showed dose-dependent cytotoxic effect with IC(50) of 14.8 μg mL(−1) compared to with IC(50) of 7.38 μg mL(−1) for the Vero cell control. Mechanistically, the pcAgNPs activated p53 that induced catalase, leading to apoptosis and DNA fragmentation via a p53 transcriptional pathway and electron transport arrest, which resulted in cell death. This synergistic efficacy of pigment-AgNPs demonstrated excellent antimicrobial and anti-proliferative activities, providing a potential lead for developing a broad-spectrum antibacterial agent and improving the therapeutic modalities targeting carcinoma cells at the gene level.
format Online
Article
Text
id pubmed-9064322
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-90643222022-05-04 Bio-fabrication of pigment-capped silver nanoparticles encountering antibiotic-resistant strains and their cytotoxic effect towards human epidermoid larynx carcinoma (HEp-2) cells Muthukrishnan, Lakshmipathy Chellappa, Muralidharan Nanda, Anima Thukkaram, Sudhakar Selvaraj, Gracyfathima Muthiah, Bavanilatha Sagadevan, Suresh Lett, J. Anita RSC Adv Chemistry Bacterial biomolecule-mediated nanoparticle (NP) synthesis constitutes a reliable, eco-friendly approach that ameliorates green-chemistry principles. In this study, stable silver nanoparticles were synthesized by exposing aqueous silver ions to an extracellular diffusible pigment produced by Pseudomonas aeruginosa (PA6) under optimized laboratory conditions. Spectroscopic and microscopic analyses showed the typical characteristics of silver with an average size of ∼28.30 nm and spherical shape. The particles were polydispersed and showed no definite agglomeration with a zeta potential of −32.3 mV, conferring stability. Antimicrobial studies were carried out using 5, 15, 25 and 50 μg mL(−1) concentrations of pcAgNPs, which showed significant antibacterial activity toward clinically important pathogens at all concentrations compared to with the control sample. The bactericidal effect induced by pcAgNPs associated with cell damage was well demonstrated using electron microscopic studies. ROS production was measured using the DCFH-DA method and the oxidative stress was assessed by measuring the reduced glutathione (GSH) levels. Cytotoxicity studies on HEp-2 (Human Epidermoid Larynx Carcinoma) cells exposed to pcAgNPs showed dose-dependent cytotoxic effect with IC(50) of 14.8 μg mL(−1) compared to with IC(50) of 7.38 μg mL(−1) for the Vero cell control. Mechanistically, the pcAgNPs activated p53 that induced catalase, leading to apoptosis and DNA fragmentation via a p53 transcriptional pathway and electron transport arrest, which resulted in cell death. This synergistic efficacy of pigment-AgNPs demonstrated excellent antimicrobial and anti-proliferative activities, providing a potential lead for developing a broad-spectrum antibacterial agent and improving the therapeutic modalities targeting carcinoma cells at the gene level. The Royal Society of Chemistry 2019-05-21 /pmc/articles/PMC9064322/ /pubmed/35521408 http://dx.doi.org/10.1039/c9ra01072f Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/
spellingShingle Chemistry
Muthukrishnan, Lakshmipathy
Chellappa, Muralidharan
Nanda, Anima
Thukkaram, Sudhakar
Selvaraj, Gracyfathima
Muthiah, Bavanilatha
Sagadevan, Suresh
Lett, J. Anita
Bio-fabrication of pigment-capped silver nanoparticles encountering antibiotic-resistant strains and their cytotoxic effect towards human epidermoid larynx carcinoma (HEp-2) cells
title Bio-fabrication of pigment-capped silver nanoparticles encountering antibiotic-resistant strains and their cytotoxic effect towards human epidermoid larynx carcinoma (HEp-2) cells
title_full Bio-fabrication of pigment-capped silver nanoparticles encountering antibiotic-resistant strains and their cytotoxic effect towards human epidermoid larynx carcinoma (HEp-2) cells
title_fullStr Bio-fabrication of pigment-capped silver nanoparticles encountering antibiotic-resistant strains and their cytotoxic effect towards human epidermoid larynx carcinoma (HEp-2) cells
title_full_unstemmed Bio-fabrication of pigment-capped silver nanoparticles encountering antibiotic-resistant strains and their cytotoxic effect towards human epidermoid larynx carcinoma (HEp-2) cells
title_short Bio-fabrication of pigment-capped silver nanoparticles encountering antibiotic-resistant strains and their cytotoxic effect towards human epidermoid larynx carcinoma (HEp-2) cells
title_sort bio-fabrication of pigment-capped silver nanoparticles encountering antibiotic-resistant strains and their cytotoxic effect towards human epidermoid larynx carcinoma (hep-2) cells
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9064322/
https://www.ncbi.nlm.nih.gov/pubmed/35521408
http://dx.doi.org/10.1039/c9ra01072f
work_keys_str_mv AT muthukrishnanlakshmipathy biofabricationofpigmentcappedsilvernanoparticlesencounteringantibioticresistantstrainsandtheircytotoxiceffecttowardshumanepidermoidlarynxcarcinomahep2cells
AT chellappamuralidharan biofabricationofpigmentcappedsilvernanoparticlesencounteringantibioticresistantstrainsandtheircytotoxiceffecttowardshumanepidermoidlarynxcarcinomahep2cells
AT nandaanima biofabricationofpigmentcappedsilvernanoparticlesencounteringantibioticresistantstrainsandtheircytotoxiceffecttowardshumanepidermoidlarynxcarcinomahep2cells
AT thukkaramsudhakar biofabricationofpigmentcappedsilvernanoparticlesencounteringantibioticresistantstrainsandtheircytotoxiceffecttowardshumanepidermoidlarynxcarcinomahep2cells
AT selvarajgracyfathima biofabricationofpigmentcappedsilvernanoparticlesencounteringantibioticresistantstrainsandtheircytotoxiceffecttowardshumanepidermoidlarynxcarcinomahep2cells
AT muthiahbavanilatha biofabricationofpigmentcappedsilvernanoparticlesencounteringantibioticresistantstrainsandtheircytotoxiceffecttowardshumanepidermoidlarynxcarcinomahep2cells
AT sagadevansuresh biofabricationofpigmentcappedsilvernanoparticlesencounteringantibioticresistantstrainsandtheircytotoxiceffecttowardshumanepidermoidlarynxcarcinomahep2cells
AT lettjanita biofabricationofpigmentcappedsilvernanoparticlesencounteringantibioticresistantstrainsandtheircytotoxiceffecttowardshumanepidermoidlarynxcarcinomahep2cells