Cargando…
Stoichiometry deviation in amorphous zirconium dioxide
Amorphous zirconia (a-ZrO(2)) has been simulated using a synergistic combination of state-of-the-art methods: employing reverse Monte-Carlo, molecular dynamics and density functional theory together. This combination has enabled the complex chemistry of the amorphous system to be efficiently investi...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9064365/ https://www.ncbi.nlm.nih.gov/pubmed/35516402 http://dx.doi.org/10.1039/c9ra01865d |
Sumario: | Amorphous zirconia (a-ZrO(2)) has been simulated using a synergistic combination of state-of-the-art methods: employing reverse Monte-Carlo, molecular dynamics and density functional theory together. This combination has enabled the complex chemistry of the amorphous system to be efficiently investigated. Notably, the a-ZrO(2) system was observed to accommodate excess oxygen readily – through the formation of neutral peroxide (O(2)(2−)) defects – a result that has implications not only in the a-ZrO(2) system, but also in other systems employing network formers, intermediates and modifiers. The structure of the a-ZrO(2) system was also determined to have edge-sharing characteristics similar to structures reported in the amorphous TeO(2) system and other chalcogenide-containing glasses. |
---|