Cargando…
Performance enhanced electromagnetic wave absorber from controllable modification of natural plant fiber
Short, surface rough carbon rods, which were derived from natural sisal fiber and went through two different modifications, with excellent electromagnetic wave absorption performance, were studied in this work for the first time. The structure–property relationship was clearly established here. It w...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9064438/ https://www.ncbi.nlm.nih.gov/pubmed/35516410 http://dx.doi.org/10.1039/c9ra02764e |
Sumario: | Short, surface rough carbon rods, which were derived from natural sisal fiber and went through two different modifications, with excellent electromagnetic wave absorption performance, were studied in this work for the first time. The structure–property relationship was clearly established here. It was shown that these green, cheap and easily obtained carbon rods with mass preparation possibility presented eye-catching absorbing behaviors towards electromagnetic wave. Based on the natural structure of sisal fiber, the minimum reflection loss of KOH activated product reached −51.1 dB and the maximum effective absorbing bandwidth achieved 7.88 GHz. The magnetically modified sample presented −48.6 dB of minimum reflection loss and 4.32 GHz of optimal absorbing bandwidth. Its pioneering application in this field not only opens a new road for this traditional textile sisal fiber but also would possibly make a referable contribution to the design and synthesis of superior carbonaceous electromagnetic wave absorption materials based on bioresource. |
---|