Cargando…
Synergistic effect of lignin incorporation into polystyrene for producing sustainable superadsorbent
Lignin has gained intensive interest as an excellent raw material for the generation of advanced green products. Polystyrene (PS) is known for its worldwide application in water purification processes. To induce a sustainable PS, kraft lignin (KL) and polystyrene were polymerized via free radical po...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9064571/ https://www.ncbi.nlm.nih.gov/pubmed/35520539 http://dx.doi.org/10.1039/c9ra02526j |
_version_ | 1784699408700407808 |
---|---|
author | Ghavidel, Nasim Fatehi, Pedram |
author_facet | Ghavidel, Nasim Fatehi, Pedram |
author_sort | Ghavidel, Nasim |
collection | PubMed |
description | Lignin has gained intensive interest as an excellent raw material for the generation of advanced green products. Polystyrene (PS) is known for its worldwide application in water purification processes. To induce a sustainable PS, kraft lignin (KL) and polystyrene were polymerized via free radical polymerization in a facile aqueous emulsion process. KL enhanced surface area and porosity of PS. The physicochemical properties of induced KL–PS were analyzed, and the fate of lignin in KL–PS was discussed fundamentally. Wettability and surface energy analyses were implemented to monitor the surface properties of KL, PS and KL–PS. Incorporation of KL in PS (40 wt%) boosted its surface energy and oxygen content, which led to KL–PS with better compatibility than PS with copper ions in aqueous systems. A quartz crystal microbalance with dissipation (QCM-D) confirmed the noticeably higher adsorption performance of copper ion on KL–PS than on PS and KL. The sorption mechanism, which was revealed by FTIR studies, was primarily attributed to the coordination of Cu(ii) and hydroxyl group of KL–PS as well as the quadrupolar system of KL–PS. |
format | Online Article Text |
id | pubmed-9064571 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-90645712022-05-04 Synergistic effect of lignin incorporation into polystyrene for producing sustainable superadsorbent Ghavidel, Nasim Fatehi, Pedram RSC Adv Chemistry Lignin has gained intensive interest as an excellent raw material for the generation of advanced green products. Polystyrene (PS) is known for its worldwide application in water purification processes. To induce a sustainable PS, kraft lignin (KL) and polystyrene were polymerized via free radical polymerization in a facile aqueous emulsion process. KL enhanced surface area and porosity of PS. The physicochemical properties of induced KL–PS were analyzed, and the fate of lignin in KL–PS was discussed fundamentally. Wettability and surface energy analyses were implemented to monitor the surface properties of KL, PS and KL–PS. Incorporation of KL in PS (40 wt%) boosted its surface energy and oxygen content, which led to KL–PS with better compatibility than PS with copper ions in aqueous systems. A quartz crystal microbalance with dissipation (QCM-D) confirmed the noticeably higher adsorption performance of copper ion on KL–PS than on PS and KL. The sorption mechanism, which was revealed by FTIR studies, was primarily attributed to the coordination of Cu(ii) and hydroxyl group of KL–PS as well as the quadrupolar system of KL–PS. The Royal Society of Chemistry 2019-06-05 /pmc/articles/PMC9064571/ /pubmed/35520539 http://dx.doi.org/10.1039/c9ra02526j Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Ghavidel, Nasim Fatehi, Pedram Synergistic effect of lignin incorporation into polystyrene for producing sustainable superadsorbent |
title | Synergistic effect of lignin incorporation into polystyrene for producing sustainable superadsorbent |
title_full | Synergistic effect of lignin incorporation into polystyrene for producing sustainable superadsorbent |
title_fullStr | Synergistic effect of lignin incorporation into polystyrene for producing sustainable superadsorbent |
title_full_unstemmed | Synergistic effect of lignin incorporation into polystyrene for producing sustainable superadsorbent |
title_short | Synergistic effect of lignin incorporation into polystyrene for producing sustainable superadsorbent |
title_sort | synergistic effect of lignin incorporation into polystyrene for producing sustainable superadsorbent |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9064571/ https://www.ncbi.nlm.nih.gov/pubmed/35520539 http://dx.doi.org/10.1039/c9ra02526j |
work_keys_str_mv | AT ghavidelnasim synergisticeffectofligninincorporationintopolystyreneforproducingsustainablesuperadsorbent AT fatehipedram synergisticeffectofligninincorporationintopolystyreneforproducingsustainablesuperadsorbent |