Cargando…
PEGylated polyvinylidene fluoride membranes via grafting from a graphene oxide additive for improving permeability and antifouling properties
Polyvinylidene fluoride (PVDF) porous membranes with enhanced hydrophilicity and antifouling performance were developed via surface PEGylation (PEG, polyethylene glycol) via a reactive graphene oxide (GO) additive. PVDF/GO blended membranes were first fabricated via a non-solvent-induced phase separ...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9064814/ https://www.ncbi.nlm.nih.gov/pubmed/35515263 http://dx.doi.org/10.1039/c9ra03337h |
Sumario: | Polyvinylidene fluoride (PVDF) porous membranes with enhanced hydrophilicity and antifouling performance were developed via surface PEGylation (PEG, polyethylene glycol) via a reactive graphene oxide (GO) additive. PVDF/GO blended membranes were first fabricated via a non-solvent-induced phase separation process. Then the carboxyl groups of GO sheets immobilized on the membrane surface acted as initiating sites for grafting amine-functionalized PEG (PEG-NH(2)) chains via an amination reaction. Analysis of the X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy-attenuated total reflectance results confirmed the successful grafting of hydrophilic PEG molecular chains on PVDF membrane surfaces. The water contact angle of the PEGylated PVDF membrane decreased to 59.9°, indicating improved hydrophilicity. As a result, the antifouling performance was enhanced significantly. After surface PEGylation, the flux recovery rate is reached 90.2%, the total fouling ratio was as low as 20.7%, and reversible fouling plays a dominant role during the membrane fouling process. This work provides a valuable strategy to fabricate PEGylated membranes via the introduction of a reactive GO additive. |
---|