Cargando…
Deep reinforcement learning for self-tuning laser source of dissipative solitons
Increasing complexity of modern laser systems, mostly originated from the nonlinear dynamics of radiation, makes control of their operation more and more challenging, calling for development of new approaches in laser engineering. Machine learning methods, providing proven tools for identification,...
Autores principales: | Kuprikov, Evgeny, Kokhanovskiy, Alexey, Serebrennikov, Kirill, Turitsyn, Sergey |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9065020/ https://www.ncbi.nlm.nih.gov/pubmed/35504948 http://dx.doi.org/10.1038/s41598-022-11274-w |
Ejemplares similares
-
Inverse design of mode-locked fiber laser by particle swarm optimization algorithm
por: Kokhanovskiy, Alexey, et al.
Publicado: (2021) -
Machine Learning Methods for Control of Fibre Lasers with Double Gain Nonlinear Loop Mirror
por: Kokhanovskiy, Alexey, et al.
Publicado: (2019) -
Intracavity incoherent supercontinuum dynamics and rogue waves in a broadband dissipative soliton laser
por: Meng, Fanchao, et al.
Publicado: (2021) -
Dissipative Solitons
por: Akhmediev, Nail, et al.
Publicado: (2005) -
Breathing dissipative solitons in mode-locked fiber lasers
por: Peng, Junsong, et al.
Publicado: (2019)