Cargando…
Auto-generated database of semiconductor band gaps using ChemDataExtractor
Large-scale databases of band gap information about semiconductors that are curated from the scientific literature have significant usefulness for computational databases and general semiconductor materials research. This work presents an auto-generated database of 100,236 semiconductor band gap rec...
Autores principales: | Dong, Qingyang, Cole, Jacqueline M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9065101/ https://www.ncbi.nlm.nih.gov/pubmed/35504897 http://dx.doi.org/10.1038/s41597-022-01294-6 |
Ejemplares similares
-
A database of battery materials auto-generated using ChemDataExtractor
por: Huang, Shu, et al.
Publicado: (2020) -
Auto-generating databases of Yield Strength and Grain Size using ChemDataExtractor
por: Kumar, Pankaj, et al.
Publicado: (2022) -
A database of refractive indices and dielectric constants auto-generated using ChemDataExtractor
por: Zhao, Jiuyang, et al.
Publicado: (2022) -
A thermoelectric materials database auto-generated from the scientific literature using ChemDataExtractor
por: Sierepeklis, Odysseas, et al.
Publicado: (2022) -
Perovskite- and Dye-Sensitized Solar-Cell Device Databases Auto-generated Using ChemDataExtractor
por: Beard, Edward J., et al.
Publicado: (2022)