Cargando…

Dynamic O-GlcNAcylation coordinates ferritinophagy and mitophagy to activate ferroptosis

Ferroptosis is a regulated iron-dependent cell death characterized by the accumulation of lipid peroxidation. A myriad of facets linking amino acid, lipid, redox, and iron metabolisms were found to drive or to suppress the execution of ferroptosis. However, how the cells decipher the diverse pro-fer...

Descripción completa

Detalles Bibliográficos
Autores principales: Yu, Fan, Zhang, Qianping, Liu, Hanyu, Liu, Jinming, Yang, Song, Luo, Xiaofan, Liu, Wei, Zheng, Hao, Liu, Qiqi, Cui, Yunxi, Chen, Guo, Li, Yanjun, Huang, Xinglu, Yan, Xiyun, Zhou, Jun, Chen, Quan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Nature Singapore 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9065108/
https://www.ncbi.nlm.nih.gov/pubmed/35504898
http://dx.doi.org/10.1038/s41421-022-00390-6
Descripción
Sumario:Ferroptosis is a regulated iron-dependent cell death characterized by the accumulation of lipid peroxidation. A myriad of facets linking amino acid, lipid, redox, and iron metabolisms were found to drive or to suppress the execution of ferroptosis. However, how the cells decipher the diverse pro-ferroptotic stress to activate ferroptosis remains elusive. Here, we report that protein O-GlcNAcylation, the primary nutrient sensor of glucose flux, orchestrates both ferritinophagy and mitophagy for ferroptosis. Following the treatment of ferroptosis stimuli such as RSL3, a commonly used ferroptosis inducer, there exists a biphasic change of protein O-GlcNAcylation to modulate ferroptosis. Pharmacological or genetic inhibition of O-GlcNAcylation promoted ferritinophagy, resulting in the accumulation of labile iron towards mitochondria. Inhibition of O-GlcNAcylation resulted in mitochondria fragmentation and enhanced mitophagy, providing an additional source of labile iron and rendering the cell more sensitive to ferroptosis. Mechanistically, we found that de-O-GlcNAcylation of the ferritin heavy chain at S179 promoted its interaction with NCOA4, the ferritinophagy receptor, thereby accumulating labile iron for ferroptosis. Our findings reveal a previously uncharacterized link of dynamic O-GlcNAcylation with iron metabolism and decision-making for ferroptosis, thus offering potential therapeutic intervention for fighting disease.