Cargando…
Interpretability and fairness evaluation of deep learning models on MIMIC-IV dataset
The recent release of large-scale healthcare datasets has greatly propelled the research of data-driven deep learning models for healthcare applications. However, due to the nature of such deep black-boxed models, concerns about interpretability, fairness, and biases in healthcare scenarios where hu...
Autores principales: | Meng, Chuizheng, Trinh, Loc, Xu, Nan, Enouen, James, Liu, Yan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9065125/ https://www.ncbi.nlm.nih.gov/pubmed/35504931 http://dx.doi.org/10.1038/s41598-022-11012-2 |
Ejemplares similares
-
A multi-scale time-series dataset with benchmark for machine learning in decarbonized energy grids
por: Zheng, Xiangtian, et al.
Publicado: (2022) -
MIMIC-IV, a freely accessible electronic health record dataset
por: Johnson, Alistair E. W., et al.
Publicado: (2023) -
Author Correction: MIMIC-IV, a freely accessible electronic health record dataset
por: Johnson, Alistair E. W., et al.
Publicado: (2023) -
Author Correction: MIMIC-IV, a freely accessible electronic health record dataset
por: Johnson, Alistair E. W., et al.
Publicado: (2023) -
A framework for FAIR robotic datasets
por: Motta, Corrado, et al.
Publicado: (2023)