Cargando…
Improved antibacterial performance using hydrogel-immobilized lysozyme as a catalyst in water
Silver nanoparticle-based catalysts are used extensively to kill bacteria in drinking water treatment. However secondary contamination and their high cost require scientists to seek alternatives with non-toxicity, high activity and low cost. In this article, we develop a new hydrogel-immobilized lys...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9065539/ https://www.ncbi.nlm.nih.gov/pubmed/35514679 http://dx.doi.org/10.1039/c9ra02464f |
Sumario: | Silver nanoparticle-based catalysts are used extensively to kill bacteria in drinking water treatment. However secondary contamination and their high cost require scientists to seek alternatives with non-toxicity, high activity and low cost. In this article, we develop a new hydrogel-immobilized lysozyme (h-lysozyme) that shows excellent antibacterial performance, including high activity duration of up to 55 days, inhibition efficiency as high as 99.4%, good recycling capability of up to 11 cycles, a wide temperature window and extremely low concentration. The immobilized lysozyme displayed greatly improved bacterial inhibition with both Gram-negative E. coli and Gram-positive B. subtilis, which enables broad antibacterial applications in various water systems. In parallel, the non-toxic structure and high stability of the h-lysozyme without additional contamination make it a promising alternative to nanoparticle catalysts fur use in drinking water purification. |
---|