Cargando…

Preparation of a novel curcumin nanoemulsion by ultrasonication and its comparative effects in wound healing and the treatment of inflammation

The aim of this study was to develop and evaluate a curcumin (Cur) nanoemulsion (NE) and enhance transdermal drug delivery. The comparative effects of Cur-NE were evaluated in terms of wound healing and anti-inflammatory action. Clove oil (oil), Tween-80 (surfactant), and PEG-400 (co-surfactant) wer...

Descripción completa

Detalles Bibliográficos
Autores principales: Ahmad, Niyaz, Ahmad, Rizwan, Al-Qudaihi, Ali, Alaseel, Salman Edrees, Fita, Ibrahim Zuhair, Khalid, Mohammed Saifuddin, Pottoo, Faheem Hyder
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9065541/
https://www.ncbi.nlm.nih.gov/pubmed/35514703
http://dx.doi.org/10.1039/c9ra03102b
_version_ 1784699604855422976
author Ahmad, Niyaz
Ahmad, Rizwan
Al-Qudaihi, Ali
Alaseel, Salman Edrees
Fita, Ibrahim Zuhair
Khalid, Mohammed Saifuddin
Pottoo, Faheem Hyder
author_facet Ahmad, Niyaz
Ahmad, Rizwan
Al-Qudaihi, Ali
Alaseel, Salman Edrees
Fita, Ibrahim Zuhair
Khalid, Mohammed Saifuddin
Pottoo, Faheem Hyder
author_sort Ahmad, Niyaz
collection PubMed
description The aim of this study was to develop and evaluate a curcumin (Cur) nanoemulsion (NE) and enhance transdermal drug delivery. The comparative effects of Cur-NE were evaluated in terms of wound healing and anti-inflammatory action. Clove oil (oil), Tween-80 (surfactant), and PEG-400 (co-surfactant) were selected on the basis of their solubility and maximum nanoemulsion region. An aqueous micro-titration method with high-energy ultrasonication was used for the preparation of Cur-NE. This method was optimized to find the best NE, followed by a five-factor, three-level, central composite design. % oil, % S(mix), ultrasonication time (min), ultrasonication intensity (%), and temperature (°C) were selected and optimized as independent variables. The optimized NE had parameters of 5.0% oil, 10% S(mix), ultrasonication time (10 min), 40% ultrasonication intensity and 50 °C temperature, which were applied as independent and dependent variables. On the basis of experimental data of the dependent variables, we calculated a hydrodynamic diameter of 93.64 ± 6.48 nm, transmittance of 98.64 ± 0.37%, and PDI of 0.263 ± 0.021. TEM and SEM results revealed the smooth and spherical shape of the particles in the NE, with a zeta potential of −11.67 ± 0.11, refractive index of 1.71 ± 0.034, viscosity of 37 ± 7 cp, pH of 7.4 ± 0.07, and drug content of 98.11 ± 0.16% for the optimized Cur-NE. Cur-NE optimization with clove oil, Tween-80, and PEG-400 might be useful for enhancing the skin permeation of Cur. In conclusion, Cur-NE played a significant role in wound healing and exhibited anti-inflammatory effects, demonstrating its potential as a nanoformulation for safe and nontoxic transdermal delivery.
format Online
Article
Text
id pubmed-9065541
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-90655412022-05-04 Preparation of a novel curcumin nanoemulsion by ultrasonication and its comparative effects in wound healing and the treatment of inflammation Ahmad, Niyaz Ahmad, Rizwan Al-Qudaihi, Ali Alaseel, Salman Edrees Fita, Ibrahim Zuhair Khalid, Mohammed Saifuddin Pottoo, Faheem Hyder RSC Adv Chemistry The aim of this study was to develop and evaluate a curcumin (Cur) nanoemulsion (NE) and enhance transdermal drug delivery. The comparative effects of Cur-NE were evaluated in terms of wound healing and anti-inflammatory action. Clove oil (oil), Tween-80 (surfactant), and PEG-400 (co-surfactant) were selected on the basis of their solubility and maximum nanoemulsion region. An aqueous micro-titration method with high-energy ultrasonication was used for the preparation of Cur-NE. This method was optimized to find the best NE, followed by a five-factor, three-level, central composite design. % oil, % S(mix), ultrasonication time (min), ultrasonication intensity (%), and temperature (°C) were selected and optimized as independent variables. The optimized NE had parameters of 5.0% oil, 10% S(mix), ultrasonication time (10 min), 40% ultrasonication intensity and 50 °C temperature, which were applied as independent and dependent variables. On the basis of experimental data of the dependent variables, we calculated a hydrodynamic diameter of 93.64 ± 6.48 nm, transmittance of 98.64 ± 0.37%, and PDI of 0.263 ± 0.021. TEM and SEM results revealed the smooth and spherical shape of the particles in the NE, with a zeta potential of −11.67 ± 0.11, refractive index of 1.71 ± 0.034, viscosity of 37 ± 7 cp, pH of 7.4 ± 0.07, and drug content of 98.11 ± 0.16% for the optimized Cur-NE. Cur-NE optimization with clove oil, Tween-80, and PEG-400 might be useful for enhancing the skin permeation of Cur. In conclusion, Cur-NE played a significant role in wound healing and exhibited anti-inflammatory effects, demonstrating its potential as a nanoformulation for safe and nontoxic transdermal delivery. The Royal Society of Chemistry 2019-06-28 /pmc/articles/PMC9065541/ /pubmed/35514703 http://dx.doi.org/10.1039/c9ra03102b Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/
spellingShingle Chemistry
Ahmad, Niyaz
Ahmad, Rizwan
Al-Qudaihi, Ali
Alaseel, Salman Edrees
Fita, Ibrahim Zuhair
Khalid, Mohammed Saifuddin
Pottoo, Faheem Hyder
Preparation of a novel curcumin nanoemulsion by ultrasonication and its comparative effects in wound healing and the treatment of inflammation
title Preparation of a novel curcumin nanoemulsion by ultrasonication and its comparative effects in wound healing and the treatment of inflammation
title_full Preparation of a novel curcumin nanoemulsion by ultrasonication and its comparative effects in wound healing and the treatment of inflammation
title_fullStr Preparation of a novel curcumin nanoemulsion by ultrasonication and its comparative effects in wound healing and the treatment of inflammation
title_full_unstemmed Preparation of a novel curcumin nanoemulsion by ultrasonication and its comparative effects in wound healing and the treatment of inflammation
title_short Preparation of a novel curcumin nanoemulsion by ultrasonication and its comparative effects in wound healing and the treatment of inflammation
title_sort preparation of a novel curcumin nanoemulsion by ultrasonication and its comparative effects in wound healing and the treatment of inflammation
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9065541/
https://www.ncbi.nlm.nih.gov/pubmed/35514703
http://dx.doi.org/10.1039/c9ra03102b
work_keys_str_mv AT ahmadniyaz preparationofanovelcurcuminnanoemulsionbyultrasonicationanditscomparativeeffectsinwoundhealingandthetreatmentofinflammation
AT ahmadrizwan preparationofanovelcurcuminnanoemulsionbyultrasonicationanditscomparativeeffectsinwoundhealingandthetreatmentofinflammation
AT alqudaihiali preparationofanovelcurcuminnanoemulsionbyultrasonicationanditscomparativeeffectsinwoundhealingandthetreatmentofinflammation
AT alaseelsalmanedrees preparationofanovelcurcuminnanoemulsionbyultrasonicationanditscomparativeeffectsinwoundhealingandthetreatmentofinflammation
AT fitaibrahimzuhair preparationofanovelcurcuminnanoemulsionbyultrasonicationanditscomparativeeffectsinwoundhealingandthetreatmentofinflammation
AT khalidmohammedsaifuddin preparationofanovelcurcuminnanoemulsionbyultrasonicationanditscomparativeeffectsinwoundhealingandthetreatmentofinflammation
AT pottoofaheemhyder preparationofanovelcurcuminnanoemulsionbyultrasonicationanditscomparativeeffectsinwoundhealingandthetreatmentofinflammation