Cargando…
Electrospinning of pyrazole-isothiazole derivatives: nanofibers from small molecules
We investigate the electrospinning of small molecules, specifically designed peptide derivatives of the pyrazole-isothiazole scaffold. Such non-natural peptides enhance the spectrum of fundamental materials used for electrospinning. Unlike standard electrospun materials, our peptides are not polymer...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9065743/ https://www.ncbi.nlm.nih.gov/pubmed/35515570 http://dx.doi.org/10.1039/c9ra02486g |
_version_ | 1784699653027004416 |
---|---|
author | Locarno, Silvia Eleta-Lopez, Aitziber Lupo, Maria Giovanna Gelmi, Maria Luisa Clerici, Francesca Bittner, Alexander M. |
author_facet | Locarno, Silvia Eleta-Lopez, Aitziber Lupo, Maria Giovanna Gelmi, Maria Luisa Clerici, Francesca Bittner, Alexander M. |
author_sort | Locarno, Silvia |
collection | PubMed |
description | We investigate the electrospinning of small molecules, specifically designed peptide derivatives of the pyrazole-isothiazole scaffold. Such non-natural peptides enhance the spectrum of fundamental materials used for electrospinning. Unlike standard electrospun materials, our peptides are not polymeric, but able to aggregate in solution and especially during processing. They contain donor/acceptor groups that can form hydrogen bonds, and groups that are able to generate π-stacking interactions, which are known as important requirements for assembly processes. The pyrazole-isothiazole derivatives were synthesized by means of a 1,3-dipolar cycloaddition reaction, which is completely regioselective, affording only one isomer. We demonstrate that our compounds can be electrospun from fluoroalcohol solution into solid, quasi-endless micro- and nanofibers. The electrospinnability varies substantially, depending on the amino acids linked to the scaffold. Some compounds provide only short fibers, while Fmoc-glycyl-(N-benzyl)-pyrazole-isothiazole-tert-butyl carboxylate-1,1-dioxide forms continuous, homogenous, and bead-free fibers (droplet-like beads are a common problem in electrospinning). We analyzed the compounds and the fibers with various spectroscopic techniques (MS, IR and Raman). Electrospinning does not change chemical composition and configuration, suggesting the monomeric form of the compounds even in the fibers. Interestingly, we found that the stereochemistry of the scaffold can affect the ability of the peptide to be electrospun. |
format | Online Article Text |
id | pubmed-9065743 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-90657432022-05-04 Electrospinning of pyrazole-isothiazole derivatives: nanofibers from small molecules Locarno, Silvia Eleta-Lopez, Aitziber Lupo, Maria Giovanna Gelmi, Maria Luisa Clerici, Francesca Bittner, Alexander M. RSC Adv Chemistry We investigate the electrospinning of small molecules, specifically designed peptide derivatives of the pyrazole-isothiazole scaffold. Such non-natural peptides enhance the spectrum of fundamental materials used for electrospinning. Unlike standard electrospun materials, our peptides are not polymeric, but able to aggregate in solution and especially during processing. They contain donor/acceptor groups that can form hydrogen bonds, and groups that are able to generate π-stacking interactions, which are known as important requirements for assembly processes. The pyrazole-isothiazole derivatives were synthesized by means of a 1,3-dipolar cycloaddition reaction, which is completely regioselective, affording only one isomer. We demonstrate that our compounds can be electrospun from fluoroalcohol solution into solid, quasi-endless micro- and nanofibers. The electrospinnability varies substantially, depending on the amino acids linked to the scaffold. Some compounds provide only short fibers, while Fmoc-glycyl-(N-benzyl)-pyrazole-isothiazole-tert-butyl carboxylate-1,1-dioxide forms continuous, homogenous, and bead-free fibers (droplet-like beads are a common problem in electrospinning). We analyzed the compounds and the fibers with various spectroscopic techniques (MS, IR and Raman). Electrospinning does not change chemical composition and configuration, suggesting the monomeric form of the compounds even in the fibers. Interestingly, we found that the stereochemistry of the scaffold can affect the ability of the peptide to be electrospun. The Royal Society of Chemistry 2019-07-02 /pmc/articles/PMC9065743/ /pubmed/35515570 http://dx.doi.org/10.1039/c9ra02486g Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Locarno, Silvia Eleta-Lopez, Aitziber Lupo, Maria Giovanna Gelmi, Maria Luisa Clerici, Francesca Bittner, Alexander M. Electrospinning of pyrazole-isothiazole derivatives: nanofibers from small molecules |
title | Electrospinning of pyrazole-isothiazole derivatives: nanofibers from small molecules |
title_full | Electrospinning of pyrazole-isothiazole derivatives: nanofibers from small molecules |
title_fullStr | Electrospinning of pyrazole-isothiazole derivatives: nanofibers from small molecules |
title_full_unstemmed | Electrospinning of pyrazole-isothiazole derivatives: nanofibers from small molecules |
title_short | Electrospinning of pyrazole-isothiazole derivatives: nanofibers from small molecules |
title_sort | electrospinning of pyrazole-isothiazole derivatives: nanofibers from small molecules |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9065743/ https://www.ncbi.nlm.nih.gov/pubmed/35515570 http://dx.doi.org/10.1039/c9ra02486g |
work_keys_str_mv | AT locarnosilvia electrospinningofpyrazoleisothiazolederivativesnanofibersfromsmallmolecules AT eletalopezaitziber electrospinningofpyrazoleisothiazolederivativesnanofibersfromsmallmolecules AT lupomariagiovanna electrospinningofpyrazoleisothiazolederivativesnanofibersfromsmallmolecules AT gelmimarialuisa electrospinningofpyrazoleisothiazolederivativesnanofibersfromsmallmolecules AT clericifrancesca electrospinningofpyrazoleisothiazolederivativesnanofibersfromsmallmolecules AT bittneralexanderm electrospinningofpyrazoleisothiazolederivativesnanofibersfromsmallmolecules |