Cargando…
Selective hydrodeoxygenation of p-cresol as a model for coal tar distillate on Ni–M/SiO(2) (M = Ce, Co, Sn, Fe) bimetallic catalysts
Ni–M/SiO(2) with different binary metals M (M = Ce, Co, Sn, Fe) prepared by an incipient impregnation method was used in the hydrodeoxygenation (HDO) of low-temperature coal tar distillate, which is rich in phenolic compounds. p-Cresol, as a model compound of the distillate, was used to evaluate the...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9066026/ https://www.ncbi.nlm.nih.gov/pubmed/35521301 http://dx.doi.org/10.1039/c9ra02791b |
_version_ | 1784699717568954368 |
---|---|
author | Pan, Liuyi He, Yulong Niu, Menglong Dan, Yong Li, Wenhong |
author_facet | Pan, Liuyi He, Yulong Niu, Menglong Dan, Yong Li, Wenhong |
author_sort | Pan, Liuyi |
collection | PubMed |
description | Ni–M/SiO(2) with different binary metals M (M = Ce, Co, Sn, Fe) prepared by an incipient impregnation method was used in the hydrodeoxygenation (HDO) of low-temperature coal tar distillate, which is rich in phenolic compounds. p-Cresol, as a model compound of the distillate, was used to evaluate the activity and selectivity of BTX products on the series of reduced Ni–M/SiO(2) catalysts in a fixed bed reactor. The properties of the catalysts were characterized by N(2) adsorption–desorption, ICP-AES, XRD, H(2)-TPR, and XPS. Benzene and toluene as the direct deoxygenation (DDO) products and cyclohexane and methylcyclohexane as the hydrogenolysis (HYD) products were detected to evaluate the selectivity of the path in the deoxygenation process. In this series of catalysts, the order of reactivity was Ni–Ce > Ni–Sn > Ni–Co > Ni–Fe > monometallic Ni. Meanwhile, the addition of Ce and Co loaded in the Lewis acid sites of the catalyst affected the electron distribution of nickel atom and its atomic arrangement on the surface of the carrier. Compared to monometallic Ni, the DDO path become dominant on Ni–Ce and Ni–Co and the selectivity for BTX products increased from 58.8% to 77.4% and 71.1%, respectively. The binary metal Sn, unlike the former two metals, formed a Ni(3)Sn crystal form with Ni, which resulted in significant enhancement of the HYD path while obviously increasing the reactivity. |
format | Online Article Text |
id | pubmed-9066026 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-90660262022-05-04 Selective hydrodeoxygenation of p-cresol as a model for coal tar distillate on Ni–M/SiO(2) (M = Ce, Co, Sn, Fe) bimetallic catalysts Pan, Liuyi He, Yulong Niu, Menglong Dan, Yong Li, Wenhong RSC Adv Chemistry Ni–M/SiO(2) with different binary metals M (M = Ce, Co, Sn, Fe) prepared by an incipient impregnation method was used in the hydrodeoxygenation (HDO) of low-temperature coal tar distillate, which is rich in phenolic compounds. p-Cresol, as a model compound of the distillate, was used to evaluate the activity and selectivity of BTX products on the series of reduced Ni–M/SiO(2) catalysts in a fixed bed reactor. The properties of the catalysts were characterized by N(2) adsorption–desorption, ICP-AES, XRD, H(2)-TPR, and XPS. Benzene and toluene as the direct deoxygenation (DDO) products and cyclohexane and methylcyclohexane as the hydrogenolysis (HYD) products were detected to evaluate the selectivity of the path in the deoxygenation process. In this series of catalysts, the order of reactivity was Ni–Ce > Ni–Sn > Ni–Co > Ni–Fe > monometallic Ni. Meanwhile, the addition of Ce and Co loaded in the Lewis acid sites of the catalyst affected the electron distribution of nickel atom and its atomic arrangement on the surface of the carrier. Compared to monometallic Ni, the DDO path become dominant on Ni–Ce and Ni–Co and the selectivity for BTX products increased from 58.8% to 77.4% and 71.1%, respectively. The binary metal Sn, unlike the former two metals, formed a Ni(3)Sn crystal form with Ni, which resulted in significant enhancement of the HYD path while obviously increasing the reactivity. The Royal Society of Chemistry 2019-07-05 /pmc/articles/PMC9066026/ /pubmed/35521301 http://dx.doi.org/10.1039/c9ra02791b Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Pan, Liuyi He, Yulong Niu, Menglong Dan, Yong Li, Wenhong Selective hydrodeoxygenation of p-cresol as a model for coal tar distillate on Ni–M/SiO(2) (M = Ce, Co, Sn, Fe) bimetallic catalysts |
title | Selective hydrodeoxygenation of p-cresol as a model for coal tar distillate on Ni–M/SiO(2) (M = Ce, Co, Sn, Fe) bimetallic catalysts |
title_full | Selective hydrodeoxygenation of p-cresol as a model for coal tar distillate on Ni–M/SiO(2) (M = Ce, Co, Sn, Fe) bimetallic catalysts |
title_fullStr | Selective hydrodeoxygenation of p-cresol as a model for coal tar distillate on Ni–M/SiO(2) (M = Ce, Co, Sn, Fe) bimetallic catalysts |
title_full_unstemmed | Selective hydrodeoxygenation of p-cresol as a model for coal tar distillate on Ni–M/SiO(2) (M = Ce, Co, Sn, Fe) bimetallic catalysts |
title_short | Selective hydrodeoxygenation of p-cresol as a model for coal tar distillate on Ni–M/SiO(2) (M = Ce, Co, Sn, Fe) bimetallic catalysts |
title_sort | selective hydrodeoxygenation of p-cresol as a model for coal tar distillate on ni–m/sio(2) (m = ce, co, sn, fe) bimetallic catalysts |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9066026/ https://www.ncbi.nlm.nih.gov/pubmed/35521301 http://dx.doi.org/10.1039/c9ra02791b |
work_keys_str_mv | AT panliuyi selectivehydrodeoxygenationofpcresolasamodelforcoaltardistillateonnimsio2mcecosnfebimetalliccatalysts AT heyulong selectivehydrodeoxygenationofpcresolasamodelforcoaltardistillateonnimsio2mcecosnfebimetalliccatalysts AT niumenglong selectivehydrodeoxygenationofpcresolasamodelforcoaltardistillateonnimsio2mcecosnfebimetalliccatalysts AT danyong selectivehydrodeoxygenationofpcresolasamodelforcoaltardistillateonnimsio2mcecosnfebimetalliccatalysts AT liwenhong selectivehydrodeoxygenationofpcresolasamodelforcoaltardistillateonnimsio2mcecosnfebimetalliccatalysts |