Cargando…
A simple spatial extension to the extended connectivity interaction features for binding affinity prediction
The representation of the protein-ligand complexes used in building machine learning models play an important role in the accuracy of binding affinity prediction. The Extended Connectivity Interaction Features (ECIF) is one such representation. We report that (i) including the discretized distances...
Autores principales: | Orhobor, Oghenejokpeme I., Rehim, Abbi Abdel, Lou, Hang, Ni, Hao, King, Ross D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9066299/ https://www.ncbi.nlm.nih.gov/pubmed/35573039 http://dx.doi.org/10.1098/rsos.211745 |
Ejemplares similares
-
Protein–ligand binding affinity prediction exploiting sequence constituent homology
por: Abdel-Rehim, Abbi, et al.
Publicado: (2023) -
Batched Bayesian
Optimization for Drug Design in Noisy
Environments
por: Bellamy, Hugo, et al.
Publicado: (2022) -
Federated Ensemble Regression Using Classification
por: Orhobor, Oghenejokpeme I., et al.
Publicado: (2020) -
An evaluation of machine-learning for predicting phenotype: studies in yeast, rice, and wheat
por: Grinberg, Nastasiya F., et al.
Publicado: (2019) -
aNMJ-morph: a simple macro for rapid analysis of neuromuscular junction morphology
por: Minty, Gavin, et al.
Publicado: (2020)