Cargando…
A numerical simulation for magnetohydrodynamic nanofluid flow and heat transfer in rotating horizontal annulus with thermal radiation
The impact of an axial magnetic field on the heat transfer and nanofluid flow among two horizontal coaxial tubes in the presence of thermal radiation was considered in this study. The impact of viscous dissipation was also considered. The well-known KKL (Koo–Kleinsteuer–Li) model was applied to appr...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9066829/ https://www.ncbi.nlm.nih.gov/pubmed/35519474 http://dx.doi.org/10.1039/c9ra03286j |
_version_ | 1784699877094064128 |
---|---|
author | Peng, Yeping Alsagri, Ali Sulaiman Afrand, Masoud Moradi, R. |
author_facet | Peng, Yeping Alsagri, Ali Sulaiman Afrand, Masoud Moradi, R. |
author_sort | Peng, Yeping |
collection | PubMed |
description | The impact of an axial magnetic field on the heat transfer and nanofluid flow among two horizontal coaxial tubes in the presence of thermal radiation was considered in this study. The impact of viscous dissipation was also considered. The well-known KKL (Koo–Kleinsteuer–Li) model was applied to approximate the viscosity of the nanofluid and the effective thermal conductivity. Furthermore, proper transformations for the velocity and temperature were applied in this study to obtain a set of ODEs (ordinary differential equations) for basic equations governing the flow, heat and mass transfer. In addition, the 4th order Runge–Kutta (RK) numerical scheme was applied to solve the differential equations along with the associated boundary conditions. The impacts of different parameters, including Hartmann number, Reynolds number, radiation parameter and aspect ratio, on the heat transfer and flow features were studied. According to the results, the value of the Nusselt number increases with an increase in the radiation parameter, Hartmann number and aspect ratio and a decrease in the Reynolds number and Eckert number. |
format | Online Article Text |
id | pubmed-9066829 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-90668292022-05-04 A numerical simulation for magnetohydrodynamic nanofluid flow and heat transfer in rotating horizontal annulus with thermal radiation Peng, Yeping Alsagri, Ali Sulaiman Afrand, Masoud Moradi, R. RSC Adv Chemistry The impact of an axial magnetic field on the heat transfer and nanofluid flow among two horizontal coaxial tubes in the presence of thermal radiation was considered in this study. The impact of viscous dissipation was also considered. The well-known KKL (Koo–Kleinsteuer–Li) model was applied to approximate the viscosity of the nanofluid and the effective thermal conductivity. Furthermore, proper transformations for the velocity and temperature were applied in this study to obtain a set of ODEs (ordinary differential equations) for basic equations governing the flow, heat and mass transfer. In addition, the 4th order Runge–Kutta (RK) numerical scheme was applied to solve the differential equations along with the associated boundary conditions. The impacts of different parameters, including Hartmann number, Reynolds number, radiation parameter and aspect ratio, on the heat transfer and flow features were studied. According to the results, the value of the Nusselt number increases with an increase in the radiation parameter, Hartmann number and aspect ratio and a decrease in the Reynolds number and Eckert number. The Royal Society of Chemistry 2019-07-17 /pmc/articles/PMC9066829/ /pubmed/35519474 http://dx.doi.org/10.1039/c9ra03286j Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Peng, Yeping Alsagri, Ali Sulaiman Afrand, Masoud Moradi, R. A numerical simulation for magnetohydrodynamic nanofluid flow and heat transfer in rotating horizontal annulus with thermal radiation |
title | A numerical simulation for magnetohydrodynamic nanofluid flow and heat transfer in rotating horizontal annulus with thermal radiation |
title_full | A numerical simulation for magnetohydrodynamic nanofluid flow and heat transfer in rotating horizontal annulus with thermal radiation |
title_fullStr | A numerical simulation for magnetohydrodynamic nanofluid flow and heat transfer in rotating horizontal annulus with thermal radiation |
title_full_unstemmed | A numerical simulation for magnetohydrodynamic nanofluid flow and heat transfer in rotating horizontal annulus with thermal radiation |
title_short | A numerical simulation for magnetohydrodynamic nanofluid flow and heat transfer in rotating horizontal annulus with thermal radiation |
title_sort | numerical simulation for magnetohydrodynamic nanofluid flow and heat transfer in rotating horizontal annulus with thermal radiation |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9066829/ https://www.ncbi.nlm.nih.gov/pubmed/35519474 http://dx.doi.org/10.1039/c9ra03286j |
work_keys_str_mv | AT pengyeping anumericalsimulationformagnetohydrodynamicnanofluidflowandheattransferinrotatinghorizontalannuluswiththermalradiation AT alsagrialisulaiman anumericalsimulationformagnetohydrodynamicnanofluidflowandheattransferinrotatinghorizontalannuluswiththermalradiation AT afrandmasoud anumericalsimulationformagnetohydrodynamicnanofluidflowandheattransferinrotatinghorizontalannuluswiththermalradiation AT moradir anumericalsimulationformagnetohydrodynamicnanofluidflowandheattransferinrotatinghorizontalannuluswiththermalradiation AT pengyeping numericalsimulationformagnetohydrodynamicnanofluidflowandheattransferinrotatinghorizontalannuluswiththermalradiation AT alsagrialisulaiman numericalsimulationformagnetohydrodynamicnanofluidflowandheattransferinrotatinghorizontalannuluswiththermalradiation AT afrandmasoud numericalsimulationformagnetohydrodynamicnanofluidflowandheattransferinrotatinghorizontalannuluswiththermalradiation AT moradir numericalsimulationformagnetohydrodynamicnanofluidflowandheattransferinrotatinghorizontalannuluswiththermalradiation |