Cargando…
The role of cobalt doping in tuning the band gap, surface morphology and third-order optical nonlinearities of ZnO nanostructures for NLO device applications
The work presented here reported the effect of doping cobalt (Co) in ZnO thin films. The thin films were prepared using the spray pyrolysis technique with 0, 1, 5 and 10 wt% cobalt doping concentrations to study the morphological, optical and third-order nonlinear optical (NLO) properties. X-ray dif...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9066876/ https://www.ncbi.nlm.nih.gov/pubmed/35519446 http://dx.doi.org/10.1039/c9ra03006a |
_version_ | 1784699887709847552 |
---|---|
author | Bairy, Raghavendra Patil, Parutagouda shankaragouda Maidur, Shivaraj R. H., Vijeth M. S., Murari Bhat K., Udaya |
author_facet | Bairy, Raghavendra Patil, Parutagouda shankaragouda Maidur, Shivaraj R. H., Vijeth M. S., Murari Bhat K., Udaya |
author_sort | Bairy, Raghavendra |
collection | PubMed |
description | The work presented here reported the effect of doping cobalt (Co) in ZnO thin films. The thin films were prepared using the spray pyrolysis technique with 0, 1, 5 and 10 wt% cobalt doping concentrations to study the morphological, optical and third-order nonlinear optical (NLO) properties. X-ray diffraction revealed the crystalline nature of the prepared thin films, and the crystallite size was found to increase with the concentration of doped Co. The morphology and surface topography of the films were largely influenced by doping, as indicated by field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM). With an increase in Co-doping concentration, the direct optical energy band-gap value increased from 3.21 eV to 3.45 eV for pure to 10 at% of Co concentrations respectively. To study the NLO properties of the prepared thin films, the Z-scan technique was adopted; it was observed that with an increase in the doping concentration from 0 to 10 wt%, the nonlinear absorption coefficient (β) was enhanced from 4.68 × 10(−3) to 9.92 × 10(−3) (cm W(−1)), the nonlinear refractive index (n(2)) increased from 1.37 × 10(−8) to 2.90 × 10(−8) (cm(2) W(−1)), and the third-order NLO susceptibility (χ((3))) values also increased from 0.79 × 10(−6) to 1.88 × 10(−6) (esu). At the experimental wavelength, the optical limiting (OL) features of the prepared films were explored, and the limiting thresholds were calculated. The encouraging results of the NLO studies suggest that the Co : ZnO thin film is a capable and promising material for nonlinear optical devices and optical power limiting applications. |
format | Online Article Text |
id | pubmed-9066876 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-90668762022-05-04 The role of cobalt doping in tuning the band gap, surface morphology and third-order optical nonlinearities of ZnO nanostructures for NLO device applications Bairy, Raghavendra Patil, Parutagouda shankaragouda Maidur, Shivaraj R. H., Vijeth M. S., Murari Bhat K., Udaya RSC Adv Chemistry The work presented here reported the effect of doping cobalt (Co) in ZnO thin films. The thin films were prepared using the spray pyrolysis technique with 0, 1, 5 and 10 wt% cobalt doping concentrations to study the morphological, optical and third-order nonlinear optical (NLO) properties. X-ray diffraction revealed the crystalline nature of the prepared thin films, and the crystallite size was found to increase with the concentration of doped Co. The morphology and surface topography of the films were largely influenced by doping, as indicated by field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM). With an increase in Co-doping concentration, the direct optical energy band-gap value increased from 3.21 eV to 3.45 eV for pure to 10 at% of Co concentrations respectively. To study the NLO properties of the prepared thin films, the Z-scan technique was adopted; it was observed that with an increase in the doping concentration from 0 to 10 wt%, the nonlinear absorption coefficient (β) was enhanced from 4.68 × 10(−3) to 9.92 × 10(−3) (cm W(−1)), the nonlinear refractive index (n(2)) increased from 1.37 × 10(−8) to 2.90 × 10(−8) (cm(2) W(−1)), and the third-order NLO susceptibility (χ((3))) values also increased from 0.79 × 10(−6) to 1.88 × 10(−6) (esu). At the experimental wavelength, the optical limiting (OL) features of the prepared films were explored, and the limiting thresholds were calculated. The encouraging results of the NLO studies suggest that the Co : ZnO thin film is a capable and promising material for nonlinear optical devices and optical power limiting applications. The Royal Society of Chemistry 2019-07-18 /pmc/articles/PMC9066876/ /pubmed/35519446 http://dx.doi.org/10.1039/c9ra03006a Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Bairy, Raghavendra Patil, Parutagouda shankaragouda Maidur, Shivaraj R. H., Vijeth M. S., Murari Bhat K., Udaya The role of cobalt doping in tuning the band gap, surface morphology and third-order optical nonlinearities of ZnO nanostructures for NLO device applications |
title | The role of cobalt doping in tuning the band gap, surface morphology and third-order optical nonlinearities of ZnO nanostructures for NLO device applications |
title_full | The role of cobalt doping in tuning the band gap, surface morphology and third-order optical nonlinearities of ZnO nanostructures for NLO device applications |
title_fullStr | The role of cobalt doping in tuning the band gap, surface morphology and third-order optical nonlinearities of ZnO nanostructures for NLO device applications |
title_full_unstemmed | The role of cobalt doping in tuning the band gap, surface morphology and third-order optical nonlinearities of ZnO nanostructures for NLO device applications |
title_short | The role of cobalt doping in tuning the band gap, surface morphology and third-order optical nonlinearities of ZnO nanostructures for NLO device applications |
title_sort | role of cobalt doping in tuning the band gap, surface morphology and third-order optical nonlinearities of zno nanostructures for nlo device applications |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9066876/ https://www.ncbi.nlm.nih.gov/pubmed/35519446 http://dx.doi.org/10.1039/c9ra03006a |
work_keys_str_mv | AT bairyraghavendra theroleofcobaltdopingintuningthebandgapsurfacemorphologyandthirdorderopticalnonlinearitiesofznonanostructuresfornlodeviceapplications AT patilparutagoudashankaragouda theroleofcobaltdopingintuningthebandgapsurfacemorphologyandthirdorderopticalnonlinearitiesofznonanostructuresfornlodeviceapplications AT maidurshivarajr theroleofcobaltdopingintuningthebandgapsurfacemorphologyandthirdorderopticalnonlinearitiesofznonanostructuresfornlodeviceapplications AT hvijeth theroleofcobaltdopingintuningthebandgapsurfacemorphologyandthirdorderopticalnonlinearitiesofznonanostructuresfornlodeviceapplications AT msmurari theroleofcobaltdopingintuningthebandgapsurfacemorphologyandthirdorderopticalnonlinearitiesofznonanostructuresfornlodeviceapplications AT bhatkudaya theroleofcobaltdopingintuningthebandgapsurfacemorphologyandthirdorderopticalnonlinearitiesofznonanostructuresfornlodeviceapplications AT bairyraghavendra roleofcobaltdopingintuningthebandgapsurfacemorphologyandthirdorderopticalnonlinearitiesofznonanostructuresfornlodeviceapplications AT patilparutagoudashankaragouda roleofcobaltdopingintuningthebandgapsurfacemorphologyandthirdorderopticalnonlinearitiesofznonanostructuresfornlodeviceapplications AT maidurshivarajr roleofcobaltdopingintuningthebandgapsurfacemorphologyandthirdorderopticalnonlinearitiesofznonanostructuresfornlodeviceapplications AT hvijeth roleofcobaltdopingintuningthebandgapsurfacemorphologyandthirdorderopticalnonlinearitiesofznonanostructuresfornlodeviceapplications AT msmurari roleofcobaltdopingintuningthebandgapsurfacemorphologyandthirdorderopticalnonlinearitiesofznonanostructuresfornlodeviceapplications AT bhatkudaya roleofcobaltdopingintuningthebandgapsurfacemorphologyandthirdorderopticalnonlinearitiesofznonanostructuresfornlodeviceapplications |