Cargando…
Treg/Th17 Ratio Regulation May Play an Important Role in Epigallocatechin-3-Gallate–Mediated Attenuation of Increased Afterload-Induced Cardiac Hypertrophy
The aim of this study was to investigate whether Treg/Th17 ratio regulation plays an important role in epigallocatechin-3-gallate (EGCG) in attenuating increased afterload-induced cardiac hypertrophy. Three-month-old male C57BL/6 mice were divided into sham + vehicle, abdominal aortic constriction (...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Journal of Cardiovascular Pharmacology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9067088/ https://www.ncbi.nlm.nih.gov/pubmed/35058409 http://dx.doi.org/10.1097/FJC.0000000000001220 |
_version_ | 1784699931088388096 |
---|---|
author | Luo, Min Mou, Qiuhong Liu, Lingjuan Tian, Jie Liu, Lifei |
author_facet | Luo, Min Mou, Qiuhong Liu, Lingjuan Tian, Jie Liu, Lifei |
author_sort | Luo, Min |
collection | PubMed |
description | The aim of this study was to investigate whether Treg/Th17 ratio regulation plays an important role in epigallocatechin-3-gallate (EGCG) in attenuating increased afterload-induced cardiac hypertrophy. Three-month-old male C57BL/6 mice were divided into sham + vehicle, abdominal aortic constriction (AAC) + vehicle, and AAC + EGCG groups. Intraperitoneal EGCG (50 mg/kg/d) administration was conducted. Cardiac structure and function were examined by ultrasonography. Pathology was examined by hematoxylin and eosin staining, wheat germ agglutinin staining, and Masson's trichome staining. T-lymphocyte subtypes were analyzed using immunofluorescence and flow cytometry assays. Ultrasonography showed that the ventricular wall in the AAC + vehicle group was thicker than that in the sham + vehicle group (P < 0.05). Hematoxylin and eosin staining revealed cardiomyocyte hypertrophy accompanied by a small amount of inflammatory cell infiltration in the AAC + vehicle group. The results of wheat germ agglutinin staining demonstrated the presence of hypertrophic cardiomyocytes in the AAC + vehicle group (P < 0.01). Masson's trichome staining showed cardiac fibrosis in the AAC + vehicle group, and the immunofluorescence assay revealed infiltration of CD4(+) cells in both AAC + vehicle and AAC + EGCG groups. Splenic flow cytometry showed a significant increase in the proportion of Treg cells in the AAC + EGCG group (P < 0.05). The proportion of Th17 cells in the AAC + vehicle group was significantly higher than that in the sham + vehicle group (P < 0.05). In conclusion, changes in the Treg/Th17 ratio are associated with the occurrence of myocardial hypertrophy caused by increased afterload. Moreover, regulation of the Treg/Th17 ratio by EGCG may play an important role in the attenuation of myocardial hypertrophy. |
format | Online Article Text |
id | pubmed-9067088 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Journal of Cardiovascular Pharmacology |
record_format | MEDLINE/PubMed |
spelling | pubmed-90670882022-05-09 Treg/Th17 Ratio Regulation May Play an Important Role in Epigallocatechin-3-Gallate–Mediated Attenuation of Increased Afterload-Induced Cardiac Hypertrophy Luo, Min Mou, Qiuhong Liu, Lingjuan Tian, Jie Liu, Lifei J Cardiovasc Pharmacol Original Article The aim of this study was to investigate whether Treg/Th17 ratio regulation plays an important role in epigallocatechin-3-gallate (EGCG) in attenuating increased afterload-induced cardiac hypertrophy. Three-month-old male C57BL/6 mice were divided into sham + vehicle, abdominal aortic constriction (AAC) + vehicle, and AAC + EGCG groups. Intraperitoneal EGCG (50 mg/kg/d) administration was conducted. Cardiac structure and function were examined by ultrasonography. Pathology was examined by hematoxylin and eosin staining, wheat germ agglutinin staining, and Masson's trichome staining. T-lymphocyte subtypes were analyzed using immunofluorescence and flow cytometry assays. Ultrasonography showed that the ventricular wall in the AAC + vehicle group was thicker than that in the sham + vehicle group (P < 0.05). Hematoxylin and eosin staining revealed cardiomyocyte hypertrophy accompanied by a small amount of inflammatory cell infiltration in the AAC + vehicle group. The results of wheat germ agglutinin staining demonstrated the presence of hypertrophic cardiomyocytes in the AAC + vehicle group (P < 0.01). Masson's trichome staining showed cardiac fibrosis in the AAC + vehicle group, and the immunofluorescence assay revealed infiltration of CD4(+) cells in both AAC + vehicle and AAC + EGCG groups. Splenic flow cytometry showed a significant increase in the proportion of Treg cells in the AAC + EGCG group (P < 0.05). The proportion of Th17 cells in the AAC + vehicle group was significantly higher than that in the sham + vehicle group (P < 0.05). In conclusion, changes in the Treg/Th17 ratio are associated with the occurrence of myocardial hypertrophy caused by increased afterload. Moreover, regulation of the Treg/Th17 ratio by EGCG may play an important role in the attenuation of myocardial hypertrophy. Journal of Cardiovascular Pharmacology 2022-05 2022-01-20 /pmc/articles/PMC9067088/ /pubmed/35058409 http://dx.doi.org/10.1097/FJC.0000000000001220 Text en Copyright © 2022 The Author(s). Published by Wolters Kluwer Health, Inc. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) , where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal. |
spellingShingle | Original Article Luo, Min Mou, Qiuhong Liu, Lingjuan Tian, Jie Liu, Lifei Treg/Th17 Ratio Regulation May Play an Important Role in Epigallocatechin-3-Gallate–Mediated Attenuation of Increased Afterload-Induced Cardiac Hypertrophy |
title | Treg/Th17 Ratio Regulation May Play an Important Role in Epigallocatechin-3-Gallate–Mediated Attenuation of Increased Afterload-Induced Cardiac Hypertrophy |
title_full | Treg/Th17 Ratio Regulation May Play an Important Role in Epigallocatechin-3-Gallate–Mediated Attenuation of Increased Afterload-Induced Cardiac Hypertrophy |
title_fullStr | Treg/Th17 Ratio Regulation May Play an Important Role in Epigallocatechin-3-Gallate–Mediated Attenuation of Increased Afterload-Induced Cardiac Hypertrophy |
title_full_unstemmed | Treg/Th17 Ratio Regulation May Play an Important Role in Epigallocatechin-3-Gallate–Mediated Attenuation of Increased Afterload-Induced Cardiac Hypertrophy |
title_short | Treg/Th17 Ratio Regulation May Play an Important Role in Epigallocatechin-3-Gallate–Mediated Attenuation of Increased Afterload-Induced Cardiac Hypertrophy |
title_sort | treg/th17 ratio regulation may play an important role in epigallocatechin-3-gallate–mediated attenuation of increased afterload-induced cardiac hypertrophy |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9067088/ https://www.ncbi.nlm.nih.gov/pubmed/35058409 http://dx.doi.org/10.1097/FJC.0000000000001220 |
work_keys_str_mv | AT luomin tregth17ratioregulationmayplayanimportantroleinepigallocatechin3gallatemediatedattenuationofincreasedafterloadinducedcardiachypertrophy AT mouqiuhong tregth17ratioregulationmayplayanimportantroleinepigallocatechin3gallatemediatedattenuationofincreasedafterloadinducedcardiachypertrophy AT liulingjuan tregth17ratioregulationmayplayanimportantroleinepigallocatechin3gallatemediatedattenuationofincreasedafterloadinducedcardiachypertrophy AT tianjie tregth17ratioregulationmayplayanimportantroleinepigallocatechin3gallatemediatedattenuationofincreasedafterloadinducedcardiachypertrophy AT liulifei tregth17ratioregulationmayplayanimportantroleinepigallocatechin3gallatemediatedattenuationofincreasedafterloadinducedcardiachypertrophy |