Cargando…
Development of a Machine Learning Model Using Limited Features to Predict 6-Month Mortality at Treatment Decision Points for Patients With Advanced Solid Tumors
Patients with advanced solid tumors may receive intensive treatments near the end of life. This study aimed to create a machine learning (ML) model using limited features to predict 6-month mortality at treatment decision points (TDPs). METHODS: We identified a cohort of adults with advanced solid t...
Autores principales: | Chalkidis, George, McPherson, Jordan, Beck, Anna, Newman, Michael, Yui, Shuntaro, Staes, Catherine |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer Health
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9067363/ https://www.ncbi.nlm.nih.gov/pubmed/35467965 http://dx.doi.org/10.1200/CCI.21.00163 |
Ejemplares similares
-
External Validation of a Machine Learning Model to Predict 6-Month Mortality for Patients With Advanced Solid Tumors
por: Chalkidis, George, et al.
Publicado: (2023) -
New Standards for Clinical Decision Support: A Survey of The State of Implementation
por: Taber, Peter, et al.
Publicado: (2021) -
Point defects in solids
por: Crawford, James, et al.
Publicado: (1975) -
A thematic analysis to examine the feasibility of EHR-based clinical decision support for implementing Choosing Wisely(®) guidelines
por: Douthit, Brian J, et al.
Publicado: (2021) -
Prospective Comparison of Medical Oncologists and a Machine Learning Model to Predict 3-Month Mortality in Patients With Metastatic Solid Tumors
por: Zachariah, Finly J., et al.
Publicado: (2022)