Cargando…
Predicting antibody binders and generating synthetic antibodies using deep learning
The antibody drug field has continually sought improvements to methods for candidate discovery and engineering. Historically, most such methods have been laboratory-based, but informatics methods have recently started to make an impact. Deep learning, a subfield of machine learning, is rapidly gaini...
Autores principales: | Lim, Yoong Wearn, Adler, Adam S., Johnson, David S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9067455/ https://www.ncbi.nlm.nih.gov/pubmed/35482911 http://dx.doi.org/10.1080/19420862.2022.2069075 |
Ejemplares similares
-
Affinity maturation of antibodies by combinatorial codon mutagenesis versus error-prone PCR
por: Simons, Jan Fredrik, et al.
Publicado: (2020) -
Antibody repertoire analysis of mouse immunization protocols using microfluidics and molecular genomics
por: Asensio, Michael A., et al.
Publicado: (2019) -
Engineering synthetic antibody binders for allosteric inhibition of prolactin receptor signaling
por: Rizk, Shahir S, et al.
Publicado: (2015) -
Exploiting next-generation sequencing in antibody selections – a simple PCR method to recover binders
por: Ferrara, Fortunato, et al.
Publicado: (2020) -
Sequencing the B Cell Receptor Repertoires of Antibody-Deficient Individuals With and Without Infection Susceptibility
por: Lim, Yoong Wearn, et al.
Publicado: (2023)