Cargando…
Persistent nucleation and size dependent attachment kinetics produce monodisperse PbS nanocrystals
Modern syntheses of colloidal nanocrystals yield extraordinarily narrow size distributions that are believed to result from a rapid “burst of nucleation” (La Mer, JACS, 1950, 72(11), 4847–4854) followed by diffusion limited growth and size distribution focusing (Reiss, J. Chem. Phys., 1951, 19, 482)...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9067564/ https://www.ncbi.nlm.nih.gov/pubmed/35655873 http://dx.doi.org/10.1039/d1sc06134h |
_version_ | 1784700033072889856 |
---|---|
author | Abécassis, Benjamin Greenberg, Matthew W. Bal, Vivekananda McMurtry, Brandon M. Campos, Michael P. Guillemeney, Lilian Mahler, Benoit Prevost, Sylvain Sharpnack, Lewis Hendricks, Mark P. DeRosha, Daniel Bennett, Ellie Saenz, Natalie Peters, Baron Owen, Jonathan S. |
author_facet | Abécassis, Benjamin Greenberg, Matthew W. Bal, Vivekananda McMurtry, Brandon M. Campos, Michael P. Guillemeney, Lilian Mahler, Benoit Prevost, Sylvain Sharpnack, Lewis Hendricks, Mark P. DeRosha, Daniel Bennett, Ellie Saenz, Natalie Peters, Baron Owen, Jonathan S. |
author_sort | Abécassis, Benjamin |
collection | PubMed |
description | Modern syntheses of colloidal nanocrystals yield extraordinarily narrow size distributions that are believed to result from a rapid “burst of nucleation” (La Mer, JACS, 1950, 72(11), 4847–4854) followed by diffusion limited growth and size distribution focusing (Reiss, J. Chem. Phys., 1951, 19, 482). Using a combination of in situ X-ray scattering, optical absorption, and (13)C nuclear magnetic resonance (NMR) spectroscopy, we monitor the kinetics of PbS solute generation, nucleation, and crystal growth from three thiourea precursors whose conversion reactivity spans a 2-fold range. In all three cases, nucleation is found to be slow and continues during >50% of the precipitation. A population balance model based on a size dependent growth law (1/r) fits the data with a single growth rate constant (k(G)) across all three precursors. However, the magnitude of the k(G) and the lack of solvent viscosity dependence indicates that the rate limiting step is not diffusion from solution to the nanoparticle surface. Several surface reaction limited mechanisms and a ligand penetration model that fits data our experiments using a single fit parameter are proposed to explain the results. |
format | Online Article Text |
id | pubmed-9067564 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-90675642022-06-01 Persistent nucleation and size dependent attachment kinetics produce monodisperse PbS nanocrystals Abécassis, Benjamin Greenberg, Matthew W. Bal, Vivekananda McMurtry, Brandon M. Campos, Michael P. Guillemeney, Lilian Mahler, Benoit Prevost, Sylvain Sharpnack, Lewis Hendricks, Mark P. DeRosha, Daniel Bennett, Ellie Saenz, Natalie Peters, Baron Owen, Jonathan S. Chem Sci Chemistry Modern syntheses of colloidal nanocrystals yield extraordinarily narrow size distributions that are believed to result from a rapid “burst of nucleation” (La Mer, JACS, 1950, 72(11), 4847–4854) followed by diffusion limited growth and size distribution focusing (Reiss, J. Chem. Phys., 1951, 19, 482). Using a combination of in situ X-ray scattering, optical absorption, and (13)C nuclear magnetic resonance (NMR) spectroscopy, we monitor the kinetics of PbS solute generation, nucleation, and crystal growth from three thiourea precursors whose conversion reactivity spans a 2-fold range. In all three cases, nucleation is found to be slow and continues during >50% of the precipitation. A population balance model based on a size dependent growth law (1/r) fits the data with a single growth rate constant (k(G)) across all three precursors. However, the magnitude of the k(G) and the lack of solvent viscosity dependence indicates that the rate limiting step is not diffusion from solution to the nanoparticle surface. Several surface reaction limited mechanisms and a ligand penetration model that fits data our experiments using a single fit parameter are proposed to explain the results. The Royal Society of Chemistry 2022-03-30 /pmc/articles/PMC9067564/ /pubmed/35655873 http://dx.doi.org/10.1039/d1sc06134h Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Abécassis, Benjamin Greenberg, Matthew W. Bal, Vivekananda McMurtry, Brandon M. Campos, Michael P. Guillemeney, Lilian Mahler, Benoit Prevost, Sylvain Sharpnack, Lewis Hendricks, Mark P. DeRosha, Daniel Bennett, Ellie Saenz, Natalie Peters, Baron Owen, Jonathan S. Persistent nucleation and size dependent attachment kinetics produce monodisperse PbS nanocrystals |
title | Persistent nucleation and size dependent attachment kinetics produce monodisperse PbS nanocrystals |
title_full | Persistent nucleation and size dependent attachment kinetics produce monodisperse PbS nanocrystals |
title_fullStr | Persistent nucleation and size dependent attachment kinetics produce monodisperse PbS nanocrystals |
title_full_unstemmed | Persistent nucleation and size dependent attachment kinetics produce monodisperse PbS nanocrystals |
title_short | Persistent nucleation and size dependent attachment kinetics produce monodisperse PbS nanocrystals |
title_sort | persistent nucleation and size dependent attachment kinetics produce monodisperse pbs nanocrystals |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9067564/ https://www.ncbi.nlm.nih.gov/pubmed/35655873 http://dx.doi.org/10.1039/d1sc06134h |
work_keys_str_mv | AT abecassisbenjamin persistentnucleationandsizedependentattachmentkineticsproducemonodispersepbsnanocrystals AT greenbergmattheww persistentnucleationandsizedependentattachmentkineticsproducemonodispersepbsnanocrystals AT balvivekananda persistentnucleationandsizedependentattachmentkineticsproducemonodispersepbsnanocrystals AT mcmurtrybrandonm persistentnucleationandsizedependentattachmentkineticsproducemonodispersepbsnanocrystals AT camposmichaelp persistentnucleationandsizedependentattachmentkineticsproducemonodispersepbsnanocrystals AT guillemeneylilian persistentnucleationandsizedependentattachmentkineticsproducemonodispersepbsnanocrystals AT mahlerbenoit persistentnucleationandsizedependentattachmentkineticsproducemonodispersepbsnanocrystals AT prevostsylvain persistentnucleationandsizedependentattachmentkineticsproducemonodispersepbsnanocrystals AT sharpnacklewis persistentnucleationandsizedependentattachmentkineticsproducemonodispersepbsnanocrystals AT hendricksmarkp persistentnucleationandsizedependentattachmentkineticsproducemonodispersepbsnanocrystals AT deroshadaniel persistentnucleationandsizedependentattachmentkineticsproducemonodispersepbsnanocrystals AT bennettellie persistentnucleationandsizedependentattachmentkineticsproducemonodispersepbsnanocrystals AT saenznatalie persistentnucleationandsizedependentattachmentkineticsproducemonodispersepbsnanocrystals AT petersbaron persistentnucleationandsizedependentattachmentkineticsproducemonodispersepbsnanocrystals AT owenjonathans persistentnucleationandsizedependentattachmentkineticsproducemonodispersepbsnanocrystals |