Cargando…

Persistent nucleation and size dependent attachment kinetics produce monodisperse PbS nanocrystals

Modern syntheses of colloidal nanocrystals yield extraordinarily narrow size distributions that are believed to result from a rapid “burst of nucleation” (La Mer, JACS, 1950, 72(11), 4847–4854) followed by diffusion limited growth and size distribution focusing (Reiss, J. Chem. Phys., 1951, 19, 482)...

Descripción completa

Detalles Bibliográficos
Autores principales: Abécassis, Benjamin, Greenberg, Matthew W., Bal, Vivekananda, McMurtry, Brandon M., Campos, Michael P., Guillemeney, Lilian, Mahler, Benoit, Prevost, Sylvain, Sharpnack, Lewis, Hendricks, Mark P., DeRosha, Daniel, Bennett, Ellie, Saenz, Natalie, Peters, Baron, Owen, Jonathan S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9067564/
https://www.ncbi.nlm.nih.gov/pubmed/35655873
http://dx.doi.org/10.1039/d1sc06134h
_version_ 1784700033072889856
author Abécassis, Benjamin
Greenberg, Matthew W.
Bal, Vivekananda
McMurtry, Brandon M.
Campos, Michael P.
Guillemeney, Lilian
Mahler, Benoit
Prevost, Sylvain
Sharpnack, Lewis
Hendricks, Mark P.
DeRosha, Daniel
Bennett, Ellie
Saenz, Natalie
Peters, Baron
Owen, Jonathan S.
author_facet Abécassis, Benjamin
Greenberg, Matthew W.
Bal, Vivekananda
McMurtry, Brandon M.
Campos, Michael P.
Guillemeney, Lilian
Mahler, Benoit
Prevost, Sylvain
Sharpnack, Lewis
Hendricks, Mark P.
DeRosha, Daniel
Bennett, Ellie
Saenz, Natalie
Peters, Baron
Owen, Jonathan S.
author_sort Abécassis, Benjamin
collection PubMed
description Modern syntheses of colloidal nanocrystals yield extraordinarily narrow size distributions that are believed to result from a rapid “burst of nucleation” (La Mer, JACS, 1950, 72(11), 4847–4854) followed by diffusion limited growth and size distribution focusing (Reiss, J. Chem. Phys., 1951, 19, 482). Using a combination of in situ X-ray scattering, optical absorption, and (13)C nuclear magnetic resonance (NMR) spectroscopy, we monitor the kinetics of PbS solute generation, nucleation, and crystal growth from three thiourea precursors whose conversion reactivity spans a 2-fold range. In all three cases, nucleation is found to be slow and continues during >50% of the precipitation. A population balance model based on a size dependent growth law (1/r) fits the data with a single growth rate constant (k(G)) across all three precursors. However, the magnitude of the k(G) and the lack of solvent viscosity dependence indicates that the rate limiting step is not diffusion from solution to the nanoparticle surface. Several surface reaction limited mechanisms and a ligand penetration model that fits data our experiments using a single fit parameter are proposed to explain the results.
format Online
Article
Text
id pubmed-9067564
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-90675642022-06-01 Persistent nucleation and size dependent attachment kinetics produce monodisperse PbS nanocrystals Abécassis, Benjamin Greenberg, Matthew W. Bal, Vivekananda McMurtry, Brandon M. Campos, Michael P. Guillemeney, Lilian Mahler, Benoit Prevost, Sylvain Sharpnack, Lewis Hendricks, Mark P. DeRosha, Daniel Bennett, Ellie Saenz, Natalie Peters, Baron Owen, Jonathan S. Chem Sci Chemistry Modern syntheses of colloidal nanocrystals yield extraordinarily narrow size distributions that are believed to result from a rapid “burst of nucleation” (La Mer, JACS, 1950, 72(11), 4847–4854) followed by diffusion limited growth and size distribution focusing (Reiss, J. Chem. Phys., 1951, 19, 482). Using a combination of in situ X-ray scattering, optical absorption, and (13)C nuclear magnetic resonance (NMR) spectroscopy, we monitor the kinetics of PbS solute generation, nucleation, and crystal growth from three thiourea precursors whose conversion reactivity spans a 2-fold range. In all three cases, nucleation is found to be slow and continues during >50% of the precipitation. A population balance model based on a size dependent growth law (1/r) fits the data with a single growth rate constant (k(G)) across all three precursors. However, the magnitude of the k(G) and the lack of solvent viscosity dependence indicates that the rate limiting step is not diffusion from solution to the nanoparticle surface. Several surface reaction limited mechanisms and a ligand penetration model that fits data our experiments using a single fit parameter are proposed to explain the results. The Royal Society of Chemistry 2022-03-30 /pmc/articles/PMC9067564/ /pubmed/35655873 http://dx.doi.org/10.1039/d1sc06134h Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/
spellingShingle Chemistry
Abécassis, Benjamin
Greenberg, Matthew W.
Bal, Vivekananda
McMurtry, Brandon M.
Campos, Michael P.
Guillemeney, Lilian
Mahler, Benoit
Prevost, Sylvain
Sharpnack, Lewis
Hendricks, Mark P.
DeRosha, Daniel
Bennett, Ellie
Saenz, Natalie
Peters, Baron
Owen, Jonathan S.
Persistent nucleation and size dependent attachment kinetics produce monodisperse PbS nanocrystals
title Persistent nucleation and size dependent attachment kinetics produce monodisperse PbS nanocrystals
title_full Persistent nucleation and size dependent attachment kinetics produce monodisperse PbS nanocrystals
title_fullStr Persistent nucleation and size dependent attachment kinetics produce monodisperse PbS nanocrystals
title_full_unstemmed Persistent nucleation and size dependent attachment kinetics produce monodisperse PbS nanocrystals
title_short Persistent nucleation and size dependent attachment kinetics produce monodisperse PbS nanocrystals
title_sort persistent nucleation and size dependent attachment kinetics produce monodisperse pbs nanocrystals
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9067564/
https://www.ncbi.nlm.nih.gov/pubmed/35655873
http://dx.doi.org/10.1039/d1sc06134h
work_keys_str_mv AT abecassisbenjamin persistentnucleationandsizedependentattachmentkineticsproducemonodispersepbsnanocrystals
AT greenbergmattheww persistentnucleationandsizedependentattachmentkineticsproducemonodispersepbsnanocrystals
AT balvivekananda persistentnucleationandsizedependentattachmentkineticsproducemonodispersepbsnanocrystals
AT mcmurtrybrandonm persistentnucleationandsizedependentattachmentkineticsproducemonodispersepbsnanocrystals
AT camposmichaelp persistentnucleationandsizedependentattachmentkineticsproducemonodispersepbsnanocrystals
AT guillemeneylilian persistentnucleationandsizedependentattachmentkineticsproducemonodispersepbsnanocrystals
AT mahlerbenoit persistentnucleationandsizedependentattachmentkineticsproducemonodispersepbsnanocrystals
AT prevostsylvain persistentnucleationandsizedependentattachmentkineticsproducemonodispersepbsnanocrystals
AT sharpnacklewis persistentnucleationandsizedependentattachmentkineticsproducemonodispersepbsnanocrystals
AT hendricksmarkp persistentnucleationandsizedependentattachmentkineticsproducemonodispersepbsnanocrystals
AT deroshadaniel persistentnucleationandsizedependentattachmentkineticsproducemonodispersepbsnanocrystals
AT bennettellie persistentnucleationandsizedependentattachmentkineticsproducemonodispersepbsnanocrystals
AT saenznatalie persistentnucleationandsizedependentattachmentkineticsproducemonodispersepbsnanocrystals
AT petersbaron persistentnucleationandsizedependentattachmentkineticsproducemonodispersepbsnanocrystals
AT owenjonathans persistentnucleationandsizedependentattachmentkineticsproducemonodispersepbsnanocrystals