Cargando…
Machine learning for flow batteries: opportunities and challenges
With increased computational ability of modern computers, the rapid development of mathematical algorithms and the continuous establishment of material databases, artificial intelligence (AI) has shown tremendous potential in chemistry. Machine learning (ML), as one of the most important branches of...
Autores principales: | Li, Tianyu, Zhang, Changkun, Li, Xianfeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9067567/ https://www.ncbi.nlm.nih.gov/pubmed/35655893 http://dx.doi.org/10.1039/d2sc00291d |
Ejemplares similares
-
Opportunities and Challenges in the Development of Cathode Materials for Rechargeable Mg Batteries
por: Bitenc, Jan, et al.
Publicado: (2018) -
Dopamine-derived nitrogen-doped carboxyl multiwalled carbon nanotube-modified graphite felt with improved electrochemical activity for vanadium redox flow batteries
por: Li, Qiang, et al.
Publicado: (2020) -
Density functional theory and machine learning for electrochemical square-scheme prediction: an application to quinone-type molecules relevant to redox flow batteries
por: Hashemi, Arsalan, et al.
Publicado: (2023) -
Organic Electroactive Molecule-Based Electrolytes for Redox Flow Batteries: Status and Challenges of Molecular Design
por: Zhong, Fangfang, et al.
Publicado: (2020) -
Emerging carbon-based flexible anodes for potassium-ion batteries: Progress and opportunities
por: Li, Wenbin, et al.
Publicado: (2022)