Cargando…
Local detection of pH-induced disaggregation of biocompatible micelles by fluorescence switch ON
Fluorogenic nanoparticles (NPs) able to sense different physiological environments and respond with disaggregation and fluorescence switching OFF/ON are powerful tools in nanomedicine as they can combine diagnostics with therapeutic action. pH-responsive NPs are particularly interesting as they can...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9067588/ https://www.ncbi.nlm.nih.gov/pubmed/35655864 http://dx.doi.org/10.1039/d2sc00304j |
_version_ | 1784700038567428096 |
---|---|
author | Battistelli, Giulia Proetto, Maria Mavridi-Printezi, Alexandra Calvaresi, Matteo Danielli, Alberto Constantini, Paolo Emidio Battistella, Claudia Gianneschi, Nathan C. Montalti, Marco |
author_facet | Battistelli, Giulia Proetto, Maria Mavridi-Printezi, Alexandra Calvaresi, Matteo Danielli, Alberto Constantini, Paolo Emidio Battistella, Claudia Gianneschi, Nathan C. Montalti, Marco |
author_sort | Battistelli, Giulia |
collection | PubMed |
description | Fluorogenic nanoparticles (NPs) able to sense different physiological environments and respond with disaggregation and fluorescence switching OFF/ON are powerful tools in nanomedicine as they can combine diagnostics with therapeutic action. pH-responsive NPs are particularly interesting as they can differentiate cancer tissues from healthy ones, they can drive selective intracellular drug release and they can act as pH biosensors. Controlled polymerization techniques are the basis of such materials as they provide solid routes towards the synthesis of pH-responsive block copolymers that are able to assemble/disassemble following protonation/deprotonation. Ring opening metathesis polymerization (ROMP), in particular, has been recently exploited for the development of experimental nanomedicines owing to the efficient direct polymerization of both natural and synthetic functionalities. Here, we capitalize on these features and provide synthetic routes for the design of pH-responsive fluorogenic micelles via the assembly of ROMP block-copolymers. While detailed photophysical characterization validates the pH response, a proof of concept experiment in a model cancer cell line confirmed the activity of the biocompatible micelles in relevant biological environments, therefore pointing out the potential of this approach in the development of novel nano-theranostic agents. |
format | Online Article Text |
id | pubmed-9067588 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-90675882022-06-01 Local detection of pH-induced disaggregation of biocompatible micelles by fluorescence switch ON Battistelli, Giulia Proetto, Maria Mavridi-Printezi, Alexandra Calvaresi, Matteo Danielli, Alberto Constantini, Paolo Emidio Battistella, Claudia Gianneschi, Nathan C. Montalti, Marco Chem Sci Chemistry Fluorogenic nanoparticles (NPs) able to sense different physiological environments and respond with disaggregation and fluorescence switching OFF/ON are powerful tools in nanomedicine as they can combine diagnostics with therapeutic action. pH-responsive NPs are particularly interesting as they can differentiate cancer tissues from healthy ones, they can drive selective intracellular drug release and they can act as pH biosensors. Controlled polymerization techniques are the basis of such materials as they provide solid routes towards the synthesis of pH-responsive block copolymers that are able to assemble/disassemble following protonation/deprotonation. Ring opening metathesis polymerization (ROMP), in particular, has been recently exploited for the development of experimental nanomedicines owing to the efficient direct polymerization of both natural and synthetic functionalities. Here, we capitalize on these features and provide synthetic routes for the design of pH-responsive fluorogenic micelles via the assembly of ROMP block-copolymers. While detailed photophysical characterization validates the pH response, a proof of concept experiment in a model cancer cell line confirmed the activity of the biocompatible micelles in relevant biological environments, therefore pointing out the potential of this approach in the development of novel nano-theranostic agents. The Royal Society of Chemistry 2022-03-10 /pmc/articles/PMC9067588/ /pubmed/35655864 http://dx.doi.org/10.1039/d2sc00304j Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry Battistelli, Giulia Proetto, Maria Mavridi-Printezi, Alexandra Calvaresi, Matteo Danielli, Alberto Constantini, Paolo Emidio Battistella, Claudia Gianneschi, Nathan C. Montalti, Marco Local detection of pH-induced disaggregation of biocompatible micelles by fluorescence switch ON |
title | Local detection of pH-induced disaggregation of biocompatible micelles by fluorescence switch ON |
title_full | Local detection of pH-induced disaggregation of biocompatible micelles by fluorescence switch ON |
title_fullStr | Local detection of pH-induced disaggregation of biocompatible micelles by fluorescence switch ON |
title_full_unstemmed | Local detection of pH-induced disaggregation of biocompatible micelles by fluorescence switch ON |
title_short | Local detection of pH-induced disaggregation of biocompatible micelles by fluorescence switch ON |
title_sort | local detection of ph-induced disaggregation of biocompatible micelles by fluorescence switch on |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9067588/ https://www.ncbi.nlm.nih.gov/pubmed/35655864 http://dx.doi.org/10.1039/d2sc00304j |
work_keys_str_mv | AT battistelligiulia localdetectionofphinduceddisaggregationofbiocompatiblemicellesbyfluorescenceswitchon AT proettomaria localdetectionofphinduceddisaggregationofbiocompatiblemicellesbyfluorescenceswitchon AT mavridiprintezialexandra localdetectionofphinduceddisaggregationofbiocompatiblemicellesbyfluorescenceswitchon AT calvaresimatteo localdetectionofphinduceddisaggregationofbiocompatiblemicellesbyfluorescenceswitchon AT daniellialberto localdetectionofphinduceddisaggregationofbiocompatiblemicellesbyfluorescenceswitchon AT constantinipaoloemidio localdetectionofphinduceddisaggregationofbiocompatiblemicellesbyfluorescenceswitchon AT battistellaclaudia localdetectionofphinduceddisaggregationofbiocompatiblemicellesbyfluorescenceswitchon AT gianneschinathanc localdetectionofphinduceddisaggregationofbiocompatiblemicellesbyfluorescenceswitchon AT montaltimarco localdetectionofphinduceddisaggregationofbiocompatiblemicellesbyfluorescenceswitchon |